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1  Preface 

This is meant to be a brief introduction to polymers.  Emphasis was given to 

− simple arguments and explanations (hopefully never crossing the line between simple and too sim-

ple) 

− the comparison to other materials 

− function 

With regard to simplicity, the text sometimes borrows from Rubinstein/Colby.1  These authors 

often say that some energy is about kBT, whenever entropy is involved.  That is good enough for a 

start.  Another example: The segment volume is assumed to be the same as the volume of a solvent 

molecule in section 6.  That is good enough for the concepts, but not good enough for the comparison 

with experiment.  When applying the concepts to practical problems, be prepared for cumbersome de-

tails.   

The terminology mostly follows Rubinstein/Colby.  Other sources are given footnotes 2, 3, and 4.  

This short introduction does not touch on (or hardly touches on) 

− Polyelectrolytes 

− Block copolymers 

− Gels 

− Hyperbranched polymers and dendrimers 

− Proteins (often well-defined folding pattern) 

− Polymer synthesis 

− Polymer characterization 

These are lecture notes, this is not a textbook.  Suggestions for improvement are welcome (johanns-

mann@pc.tu-clausthal.de).  

2 Historical remarks 

In  terms of technology (no understanding yet) 

− 1820s: Goodyear vulcanized the resin from Hevea brasiliensis, obtaining a rubber. 

− 1840s: Schönbein produced what to today is a variant of “regenerated cellulose”.  He obtained ni-

trocellulose (a soluble thermoplastic).   

Nitrocellulose readily explodes, which is a side aspect unrelated to it being a polymer.5   

Later, celluloid was obtained in similar ways.  Celluloid was more successful, commercially, than 

nitrocellulose. 

− ~ 1900: Bakeland prepared phenolic resins. 

The trade name was “Bakelite”.  These were thermosets   They were entirely synthetic (not derived 

from a biopolymer). 

1940s: Carothers and others: Many polymers, derived from mineral oil         

                                                      
1 Rubinstein, Colby: Polymer Physics 

mostly on theory, carefully written, sometimes with an emphasis on simple arguments 
2 Young, Lovell: Introduction to Polymers  

not new, but still a well-balanced, short introduction 
3 H.G. Elias: An Introduction to Polymer Science, Wiley.  A few volumes, comprehensive 
4 G. Strobl: The Physics if Polymer 

Shorter than Rubinstein/Colby and a bit more accessible, occasionally.  Strobl does not shy away from opinions, which 

makes it an interesting read.  
5 Today, explosives are often formulated as thermoplastic materials for ease of handling. 
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Scientific insight 

− Early 19th century: Rubber heats when stretched (similar to the gas in a bicycle pump).  

− 19th century:  

    Polymers were considered to be colloids because of the low osmotic pressure. 

    But: /c depended on concentration (modern explanation: second virial coefficient). 

− Actually, the word “colloid” derives from Greek “gluey”.  Polymers are more tacky than other col-

loids 

− /c stayed low, regardless of the solvent (unlike /c of the association colloids, the reason being 

that polymers are covalently bound chains). 

− 1920’s Staudinger: Polymers are linear “macromolecules” (evidence: x-ray diffraction)  

− Soon later: Rubber elasticity 

Comments on the current situation: 

− Polymers are of immense technical importance. 

− Polymers often are part of composites and research responds to that. 

− There are new polymers for medical applications. 

− Analytical theory is demanding but can still count as a success. 

− Simulations have been a success and continue to complement analytical theory.  Simulations are 

mostly based on coarse-grained models. 

− Living polymerization allows to control molecular weight, branching, tacticity and sequentiality6 of 

copolymers rather well.  The same is true for the metallocene catalysts in the case of polyolefins.7  

− An opinion: Polymer recycling is difficult and will stay difficult for a while.  Burning them will be 

common practice for a while.  

− An opinion: Biobased polymers have their right, but petrochemicals will stay the main resource for 

a while. 

3 Polymers as materials 

On the positive side:  

− Easily modified (additives, chemical transformation, copolymers)  

− Light-weight materials (but fiber-reinforced plastics were a disappointment for the car industry)  

− Never fully crystalline  

→ stress relaxation, no brittle fracture 

→ stress relaxation, film formation, printing 

− Amorphous component undergoes glass transition 

→ gradual dependence of viscosity on temperature, thermoplastic processing 

− Long chains →  transient network or entanglements 

→ high viscosity 

→ polymer welding  

− Light crosslinking leads to elastomers, rubbers, and gels 

− Biocompatible and bioactive polymers exist 

On the side of problems:  

− Maximum temperature: 400°C (typical: 200°C)  

                                                      
6 Sequentiality denotes to order (or the lack thereof) of the different types of segments in copolymers. 
7 Polyolefins only contain the elements C and H.  Polyethylene and polypropylene are examples.  As of 2024, polyolefins 

accounted for about 50% of the polymer market in Europe.  Polyolefins mostly are semi-crystalline.  They are mostly pro-

duced by Ziegler-Natta catalysts.  There are few good solvents.   
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− Resistance to chemicals often poor (exception: PEEK)  

− Polymers rarely are “high barrier materials’.  Oxygen and water may permeate, which is a problem 

in food packaging.  

− Polymeric electronics not easy 

− Purification not easy 

− Recycling not easy 

− Characterization not easy 

4 Molecular weight distributions, branching 

The peculiar properties of polymers are to a large extent linked to polymers containing flexible 

linear chains.8  Graphite (which is an organic material) does not count as polymer, because it contains 

sheets rather than linear chains.  Flexible chains imply the possi-

bility of transitions between different conformations, even at 

temperatures below the glass transition.  Those dissipate energy 

under deformation.  Polymers rarely are brittle.  

Consider strictly linear flexible chains above the glass tran-

sition first.  The longer the chains, the more viscous is the mate-

rial.  However, that is not the entire story.  When plotting viscos-

ity versus chain length in log-log form (Fig. 8.2), there is kink.  

The chain length at the kink is the entanglement molecular 

weight.  Whether or not (and to what extent) chains are “entan-

gled”. makes a large difference to the flow behavior.  The picture 

is complicated by the fact that the chains in a given sample do 

not usually all have the same length.  There is a chain length dis-

tribution, which easily stretches across a few decades.  In 1990’s, 

methods were found to avoid such broad molecular weight distri-

butions.  The key development were the “living polymeriza-

tions”.  Some of the important experiments in the history of pol-

ymer science were then repeated with those more well-defined 

samples (cf. Fig. 5.4).  Mostly, the conclusions, which had been 

drawn from the earlier experiments, were confirmed.  Con-

versely: Poor control over chain length and branching were a 

constant source of frustration in the early phases of polymer sci-

ence.  

Talking of polymerization: For some large-volume products, industry has developed processes 

and will stick to these unless the success of new methods justifies the rather extensive efforts of test-

ing.  An important property of a polymer is its availability and its price.  Parts of polymer research are 

concerned with moderately well-defined polymers obtained from large-scale processes, simply be-

cause these processes exist and are what they are. 

Many polymers are branched, at least slightly.  The branches may be short (a few segments) or 

long (to the extent that the distinction between a main chain and a side chain is no longer possible).  

All types of branching affect crystallization (in case there is crystallization).  Important examples are 

                                                      
8 Thermosets contain few flexible chains, but these few flexible strands still lead to a dissipation of energy under mechanical 

shock. 

 

Fig. 4.1 

There are different forms of chain topology. 

Polymers just about always contain linear 

chains.  The strands can be short in the case 

of thermosets.  Remarkably, the properties 

of cyclic polymers do not much differ from 

those of linear polymers.    

Source: Rubinstein-Colby 

 



5 

 

the different types of polyethylene.  Long chain-branches strongly effect the flow behavior (section 

8.7). 

Fig. 4.1 shows different “chain topologies”.9   

5 Conformation of the single chain 

5.1 The ideal random walk 

In the following we consider flexible linear chains.  These follow random-walk statistics (known 

from diffusion).  In consequence, the root-mean-square end-to-end distance is: 

Eq. 5.1 

Ñ is the number of segments, and l is the length of each segment.  0 and n denote the first and last seg-

ment.   

Eq. 5.1 assumes perfect flexibility.  Most bonds are not perfectly flexible, but the random-walk 

model can be recovered by grouping neighboring segments, such that the orientation correlation is lost 

between these “statistical segments” with length b (b the “statistical segment length”, also "Kuhn 

length"): 

Eq. 5.2 

A statistical segment contains multiple chemical segments.  The contour length, Lc, is given as  

Eq. 5.3 

It follows that N = Ñl/b.  b and l are related by the characteristic ratio, C∞, defined as  

Eq. 5.4 

The subscript ∞ indicates that this relation only applies for sufficiently long chains.  Fig. 5.3 shows 

stiffness parameters for some technical polymers.  There are different models predicting C∞ from the 

properties of the bond (not discussed here).  

A side remark:  Polymer coils rarely are spherical (Fig. 5.6).  One can approximate them as ellip-

ses.  On average, the lengths of principal axes are related to each other as 1:2.69:11.8 (following com-

puter simulations). 

When b is much larger than l, the chain is called semiflexible.10  DNA and collagen are examples.  

Some biopolymers are semiflexible in that sense, the reason being that the large local stiffness leads to 

                                                      
9 The term “topology” in polymer science slightly differs from topology in mathematics.  Two objects are topologically 

equivalent in mathematics, if they can be made to agree in shape by deformation only, never cutting anything.  A linear 

chain and a cyclic chain are topologically inequivalent in polymer science and in mathematics.  A branched chains is topo-

logically different from a linear chain in polymer science but not in mathematics.   
10 When b exceeds Lc, the chain is a “rigid rod”. 

1/2

ER N b=  

cL Nl Nb= =  

2

2

b
C

l
 =  

( )
1/2

2 1/2

0E nR r r N l= − =  
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an extended conformation and a correspondingly lowered polymer volume fraction – with rubber elas-

ticity maintained (section 5.4).   

Semiflexible chains are often modeled as “worm-like chains”.  These are continuous paths in 

space (no discrete steps).  There are some subtle differences between the flexible chain with large b 

and the worm-like chain.  In simple terms, the Kuhn length from the freely jointed chain is equal to 2lp 

with lp the persistence length.  The persistence length is the distance on the chain’s path, over which 

the orientation correlation function drops to 1/e.  The differences between the freely jointed chain and 

the worm-like chain become apparent at strong elongation (section 5.5).  

Scattering does not reveal the end-to-end distance.11  It rather reveals the pair correlation function 

g(r).  The matter is discussed in some depth in the course on soft condensed matter.  The pair correla-

tion function essentially is the Fourier trans-

form12 of the structure factor S(ꝗ) with 

q = kout−kin the scattering vector and q = q.  

Letters in bold denote vectors.  k is the wave 

vector.  The structure factor is proportional to 

the scattering intensity.   

When studying the pair correlation func-

tion of liquids, one usually is interested in dis-

tances similar to the distance between mole-

cules.  g(r) has a peak at the next-neighbor 

distance.  In the limit of large r, it levels off to 

a plateau with a height proportional to the 

density, .  When studying single polymer 

chains, g(r) levels off to zero at large distance because of the finite size of the coil.  Typically, one is 

not interested in molecular details (such as the next neighbor distance).  The interest is in intermediate 

range of r.   

The literature usually quotes the structure factor rather than the pair correlation function.  For the 

random coil, S(ꝗ) is  

Eq. 5.5 

The right-hand side is the “Debye function”.  Fig. 5.1 shows the Debye function as determined in ex-

periment.  Rg is the “radius of gyration”, defined as  

Eq. 5.6 

                                                      
11 RE has been determined experimentally for DNA, which was fluorescently labeled at the ends.  DNA is rather stiff.  In con-

sequence, RE is large enough to be determined with optical microscopy.   
12 There are slight complications in the algebra. 

( )
( )

( ) ( )( )( )2 2

4

2
1 expg g

g

S q qR qR
qR

= − + −  

( )
1/2

2

g CMR r r= −  

 
Fig. 5.1 

G. Strobl: The Physics of Polymers 
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CM stands for "center of mass".  For the Gaussian chain, Rg and RE are related as 

Eq. 5.7 

This result is not entirely correct for the self-avoiding chain (section 5.2). 

In the low-q limit, S(ꝗ) can be approximated as  

Eq. 5.8 

The way from Eq. 5.5 to Eq. 5.8 involves 

complications.  Importantly, scattering ex-

periments give access to Rg, as opposed to 

RE.  Static light scattering accesses the 

low-q range because the wavelength of 

light is larger than the coil diameter.  It is 

customary in the context of static light scat-

tering to not discuss the scattering intensity, 

but rather a function which is proportional 

to the inverse scattering intensity (Fig. 5.2).  

(More details are discussed in the course on 

polymer analysis.)  Following Eq. 5.8, one 

expects S−1(ꝗ) to be proportional to 

1/(1 − 1/3 q2Rg
2).  If the second term is 

small, a Taylor expansion to first order in q2Rg
2 can be applied, which leads to S−1(q)  1+1/3 q2Rg

2.13   

Remember 

− Linear chains follow random-walk statistics. 

− For the Gaussian chain, RE  N1/2. 

− Due to local chain stiffness, the chemical segment length, l, is usually replaced by the statistical 

segment length, b (larger than l by a factor between 2 and 10) 

− Scattering determines the radius of gyration, Rg. 

                                                      
13 The general form of this Taylor expansion is (1 − )−1  1 + .. 

 

Fig. 5.3 

Values pertaining to the local stain stiffness of some technical polymers.   

Source: Rubinstein-Colby 

1

6
G ER R=  

( ) 2 21
1

3
gS q q R −  

 
Fig. 5.2 

G. Strobl: The Physics of Polymers 
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5.2 The self-avoiding random walk 

For chains in a good solvent, a modification to the model is required because two segments can-

not occupy the same site.  While diffusing particles may revisit all sites, the self-avoidance transforms 

the random walk into a "self-avoiding random walk" (SAW).  Self-avoidance expands the chains, fol-

lowing14 

Eq. 5.9 

The self-avoiding random walk was among the first problems studied with computer simulations.  

Initially, the Rosenbluth algorithm was used.15,16  According to Ref. 17 (which uses a different algo-

rithm, namely the “pivot algorithm”), the current best value for the Flory exponent  is 0.5875970 

with an uncertainty of 4 in the last digit.18   

 

 

                                                      
14 The letter  in this text denotes the Flory exponent.  Elsewhere, it denotes the exponent in the relation RE  N, whatever 

the value of this exponent might be.  In these texts, one often encounters the term N.  Here, we prefer to write N1/2 and 

keep in mind that the 1/2 may have to be replaced by 0.588 in good solvents. 
15 M. N. Rosenbluth, A. W. Rosenbluth, J. Chem. Phys. 1955, 23, 356. 
16 There is touching report of a researcher from the pre-computer time, who wrote down all possible paths of chains with up 

to 7 segments in 2D.  That took a while.  The deviation from square-root behavior were noticeable. 

In modern simulations, one never covers all possible configurations of a sample.  That is impossible because of the „combi-

natorial explosion“.  One covers many configurations and hopes that these are representative of the entire ensemble.    
17 Clisby, N.; Dünweg, B., High-precision estimate of the hydrodynamic radius for self-avoiding walks. Physical Review E 

2016, 94, (5). 
18 Interestingly, the best value for a universal constant is obtained by simulation rather than analytical theory. 

0.588

ER N l N l= =  

 
Fig. 5.4 

from Rubinstein/Colby 

  
Fig. 5.5 

G. Strobl: The Physics of Polymers 



9 

 

The value of  does have practical implications.  Consider a polymer chain with 106 segments.  

The difference between (106)0.5 and (106)0.588 amounts to about a factor of 3.  Consider “dilute solu-

tions”, which are solutions, in which the different coils hardly overlap.  "Dilute polymer solutions" are 

Newtonian liquids.  They have a concentration lower than the overlap concentration, where the "over-

lap concentration" is closely related to the coil diameter (Fig. 5.5).  At concentrations larger than the 

overlap concentration, everything becomes more complicated.19  For chains with N = 106, the differ-

ence between   = 0.5 and  = 0.588 changes the overlap concentration by a factor of 9.  

Chains follow ideal random-walk statistics when the solvent is a ”-solvent”.  In the -solvent, 

there is a slight attraction between segments, which compensates for the repulsion caused by self-

avoidance.  Fig. 5.4 shows experimental data.  The chains studied had been prepared with living 

polymerization, meaning that the molecular weight distributions were narrow.  Otherwise, it would 

have much more difficult to nail down self-avoidance, experimentally.  

Chains follow ideal random-walk statistics in the melt.  Th argument goes back to Flory and 

sounds simplistic.  It was later confirmed with rigorous theory20 and neutron scattering.21  Flory argues 

that the swelling due to self-avoidance lets the neighboring chains to swell, as well.  That affects the 

energy balance (section 5.8) to the extent that the chains do not actually swell.   

Remember 

− In good solvents, the exponent 1/2 in RE  N1/2 from random-walk statistic is replaced by 

 = 0.588. 

− In -solvents and in the melt, the polymer conformation is „pseudo-ideal“, meaning RE  N1/2. 

− Self-avoidance has in influence on the overlap concentration, below which chains do not overlap, 

thereby constituting a “dilute solution”. 

                                                      
19 „Semidilute solutions“ have overlap, but still display considerable fluctuations of the local segment concentration because 

the overlap is weak.  „Concentrated solutions“ have small fluctuations in segment concentration.  There is a transition to 

polymers plasticized by small molecules, dissolved in the polymer matrix.  
20 In 2007, detailed simulations revealed that this is almost correct, but not quite.*  Revisiting the scattering data, the devia-

tion was confirmed.   

   *Wittmer, JP, et al. doi.org/10.1209/0295-5075/77/56003. 
21 Neutron scattering was done on a small minority of protonated chains in a matrix of deuterated chains of the same type.21  

The proton and the deuteron have different neutron scattering lengths. 

For the aficionados: At large molecular weight, protonated and deuterated polystyrene chains have a slight tendency to de-

mix (have a non-zero -parameter larger, section 6).  That is so because of the anharmonicity of the Morse potential and the 

zero-point energy.  Because the deuteron is heavier than the neutron, the zero-point energy (proportional to ħ = ħ(/)1/2) 

is lower for the deuteron.  Because of the asymmetry of the Morse potential, the bond length is slightly decreased.  Because 

the electronic polarizability is correlated to the volume of a molecule, the polarizability differs between the protonated and 

the deuterated molecules.  The two slightly differ in van-der-Waals attraction and therefore have a slightly positive mixing 

enthalpy.  
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5.3 Scale invariance, fractal geometry of polymer chains 

In the range of q  Rg
−1, the structure factor from Eq. 5.5 can be approximated as 

Eq. 5.10 

S(q) is a power law with a power-law index of 

−2.  When plotted in log-log form, S(q) is a 

straight line with slope −2.  The “Kratky-plot” 

(Fig. 5.7) is adapted to that situation.  In the 

range, where the power law holds, there is nei-

ther a peak nor a shoulder.  More technically, 

there is no ”characteristic lengt”.  The statistics 

of the chain is “scale-invariant” in the q-range 

between Rg
−1 and b−1, which is equivalent to a 

size range from slightly above b to slightly be-

low Rg.  The chain does not change its appearance (its statistics) upon zooming in on it (Fig. 5.6).  

Such objects are called “fractal”.  Other examples are the dendritic structure resulting from diffusion 

limited aggregation22 and the Mandelbrot set.23  Fractal objects have a “fractal dimension”.  Place a 

sphere with a certain radius around a segment on the chain and count the number of other segments 

inside the sphere.  Repeat that for many segments and take the average.  Repeat that for many radii 

                                                      
22 en.wikipedia.org/wiki/Diffusion-limited aggregation 
23 en.wikipedia.org/wiki/Mandelbrot_set 

( ) ( )
2

2 gS q qR
−

=  

 
Fig. 5.6 

Snap shot of a single chain.   

If you zoom into the image, the statisti-

cal properties do not change.  Of course, 

this only applies as long as neither the 

individual segment nor the chain as a 

whole can be seen. Note that the coil not 

at all spherical or nearly spherical. 

from Rubinstein/Colby 

 
Fig. 5.7 

The fractal dimensions of polymer coils 

depends on the extent to which they are 

collapsed or stretched. 

www.researchgate.net/figure/Fractal-di-

mensions-for-polymers-to-characterize-

the-effective-conformational-states-

For_fig1_316112010 

 
Fig. 5.8 

G. Strobl: The Physics of Polymers 
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and plot the average number of segments, Nsphere, versus radius, Rsphere.  For a dense medium, the num-

ber would scale as Rsphere
3.  For a flat sheet, the relation is Nsphere  R2

sphere.  For the stiff rod, one has 

Nsphere  Rsphere.  In these cases, the fractal dimension is the same as the dimension of the space.  For 

the random coil, one also has Nsphere  R2
sphere even though the coil is an object in three-dimensional 

space.  The exponent of 2 follows from Rsphere  N1/2
sphere, from which it follows that Nsphere  R2

sphere.  

The fractal dimension of the ideal random walk is 2.  For that reason, S(q) scales as q−2.  For the self-

avoiding walk, the fractal dimension is 0.588−2   2.892.  S(q) scales as q−2.892.  (The self-avoiding 

walk also is scale-invariant, Fig. 5.7.) 

Fractal structure is interesting because scale invariance is the prerequisite for a family of tools 

called “renormalization group theory”.  The fluctuations of density close to a critical point also are 

scale-invariant.24  The power-law exponents (all of them, including the power-law exponent in S(q)) 

are universal.  They do not depend on the material.  The Flory exponent is closely linked to one the 

exponents from these theories.   

The density fluctuations in polymer gels sometimes also display scale invariance (Fig. 5.9). 

                                                      
24 The vacuum fluctuations in quantum mechanics are scale-invariant, as well.  „Renormalization“ avoids a few seemingly 

paradox phenomena, related to the vacuum fluctuations.  

 

Fig. 5.9 

Another example for scale invariance.  

(a) Small-angle neutron scattering (SANS) and light scattering (LS) profiles of PNIPA gels and solution 

and (b) schematic representation of the gel network.  Colors varying from red to blue denote increasing 

degree of crosslinking. 

en.wikipedia.org/wiki/Polymer_scattering 
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Remember 

− On spatial scales larger than b and smaller than Rg, the chain conformation is scale-invariant.   

− The fractal dimensions are 2 for the ideal random walk and 2.892 for the self-avoiding random 

walk. 

− In the scale-invariant regime S(q) plotted in log-log form is a straight line, where the negative slope 

is equal to the fractal dimension.  Straight lines in log-log plots are characteristic for scale 

invariance. 

− Scale invariance has consequences for modeling.  Renormalization group theory applies.  The 

exponents are universal in a certain sense.  (The Flory exponent is universal.)  

The numerous types of fluctuations close to critical points are scale-invariant as well. 

5.4 Restoring force onto an extended chain  

When a polymer network is stretched, each individual chain is 

stretched, as well.  The number of accessible microconformations 

then decreases.  In the limit of the fully stretched chain, there is only 

one such microconformation.  Because of S = kB ln (S the entropy, 

 the number of microconformations) the entropy decreases with 

stretching.  Stretching increases the free energy A because of 

A = U − TS.  The decrease in entropy creates a restoring force.  (The 

force onto the piston of a bicycle pump also is of entropic origin, if 

the expansion occurs at constant temperature, Box 7.1.) 

We make this argument quantitative below.  The chain minimizes 

its free energy A, the latter given as  

 Eq. 5.11 

h is the end-to-end distance (of the stretched or the unstretched 

chain).  The number of microconformations is 

Eq. 5.12 

Eq. 5.12 is more fundamental than Eq. 5.2.  The distribution of end-to-end distances of a random walk 

with no correlations between steps25 is a Gaussian.  This is the content of the central limit theorem.  It 

is relevant to all of statistics.  The width of the Gaussian (often called ) is (Nb2)1/2.  Eq. 5.2 results 

from an integration of the form  

                                                      
25 The absence of correlations is the central requirement for Gaussian statistics (even when errors in measurements are or are 

not distributed as Gaussians).  Self-avoidance amounts to a correlation between segments, which are distant from each 

other on the chain.  Such correlations between distant segments are not easily accounted for in modeling.  The correlations 

between neighboring segments can be accounted for by grouping neighboring segments, such that they form „statistical 

segments“. 

( )const lnBA U TS k T h= − = −   

( )
2

0 2
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3
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h
h
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h
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 
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 
 

 
=  − 

 

 

 

Fig. 5.10 

Upon stretching, a polymer chain 

loses entropy.  This loss of entropy 

drives rubber elasticity. 

www.ahd.tudelft.nl/~frank/show-

case.html 
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Eq. 5.13 

<x2>It is the second moment of the underlying distribution of probabilities.  If the distribution is a 

Gaussian, one has x2 = 2.  The integration leads to Eq. 5.2. 

0 in Eq. 5.12 is a prefactor of no further interest.  The factor of 3 in the numerator follows from 

the three dimensions.  In increase in free energy caused by stretching is 

Eq. 5.14 

The elastic restoring force onto a stretched chain is26 

Eq. 5.15 

In the last step, we assumed that the internal energy, U, does not depend on chain stretching.  (In steel, 

the internal energy, U, increases upon deformation.  Steel shows enthalpy elasticity.27)  Inserting Eq. 

5.12 into Eq. 5.15 leads to: 

Eq. 5.16 

In the last step, the spring constant, rubber, was introduced.  The spring constant in rubber elasticity is  

Eq. 5.17 

A reminder: We only considered the single chain.  For networks see section 7.  

Remember 

− Rubber elasticity leads to an entropic force, which opposes the chain stretching.   

− The spring constant of stretching is 3kBT/(Nb2).  

                                                      
26 This reasoning behind this equation is sometimes called the "principle of virtual work".  One also writes F V= −  with F  

the force and V the potential.  In the case of rubber elasticity, the potential contains an entropic term. 
27 Enthalpy elasticity denotes an elasticity linked to potentials as opposed to an elasticity linked to kinetic energy.  See Box 

7.1. 
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5.5 Chains close to their maximum extension 

At large extension, the force-displacement relation increases steeply because the length of the 

chain can never exceed the contour length.  There are two separate equations for the freely jointed 

chain and the worm-like chain.  DNA was shown to behave like a worm-like chain in experiments 

with optical tweezers (Fig. 5.12).  The worm-like chain is flexible on all scales, while the freely 

jointed chain consists of rigid segments.   

  

Remember 

− At large strain, rubber elasticity must be modified because the length of a chain can never exceed 

the contour length.  Shortly before failure, the force-extension relation has a steep slope.  

5.6 Deformed chains: thermal blobs 

People, who appreciate simple arguments, derive the energy contained in strain stretching from 

the so-called “thermal blobs”.  On short scales, a stretched chain looks like random coil.  A “short 

scale” here implies a sphere with the radius of a “blob”.  The entire chain is depicted as a sequence of 

blobs (Fig. 5.13).  The line of reasoning is that every blob takes away one degree of freedom from the 

chain conformation.  Following an argument similar to what is explained in section 5.8, every blob 

adds kBT to free energy of the chain.  S decreases and A increases in consequence.  The energy con-

tained in stretching is NbkBT with Nb the number of blobs.  Let nb be the number segments per blob.  nb 

is given an Rb
2/b2 with Rb the radius of the blob.28  We collect relations as follows: 

                                                      
28 For the self-avoiding chain, the exponent of 2 is replaced by 0.588−2 = 2.892. 

 
Fig. 5.12 

from Rubinstein/Colby 

The measurement occurred with optical 

tweezers (Fig. 5.11) 

 
Fig. 5.11 

Optical tweezers trap a glass sphere in the 

focus of a laser beam and closely monitor 

the sphere’s position.  The force onto the 

sphere is inferred from the slight displace-

ment of the sphere away from the laser fo-

cus. 

www.nature.com/articles/s43586-021-

00021-6 
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 Eq. 5.18 

Ignoring the numerical factor of 3/2, this results agrees with Eq. 5.14. 

Remember 

− The energy contained in deformation is NbkBT with Nb the number of 

blobs. 

5.7 Chains confined to a slit 

The blob picture is simple and good enough for quick estimates.  

We drive this insight home by estimating the energy needed to confine a 

chain to a slit of with h.  The blob radius is h/2.  The number of seg-

ments in a blob is nb = (h/(2b))2.  The number of blobs is Nb = N/nb and 

the energy contained in the compression is  

Eq. 5.19 

Polymer chains resist compression.  If a colloidal sphere is coated with a polymer brush, the brush re-

sists compression.  (The mathematics is slightly different from Eq. 5.19 in the case of the brush.29)  

This mechanism stabilizes colloids against aggregation (leads to “steric stabilization”). 

Remember 

− Polymer chains resist compression. 

− This is exploited for the steric stabilization of colloids. 

5.8 Derivation of the Flory exponent from an energy balance 

Before the Flory exponent was determined by computer simulation, Flory had made a prediction 

of it, based on the energies contained in swelling and in the mutual exclusion of segments from the 

same site.  He assumed the energy in swelling to be essentially the same as the energy in stretching, 

following rubber elasticity (where R states the role of h).  Following Eq. 5.14, Flory assumed   

Eq. 5.20 

                                                      
29 A polymer brush is an ensemble of terminally attached chains, where the high grafting density leads to a stretching of the 

chains away from the substrate. 
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For increase in free energy caused by the exclusions he assumed 

Eq. 5.21 

The terms make sense: 

− Because the interaction is entropic in nature, the prefactor must be kBT. 

− The probability of two segments hitting each other is proportional to the square of the concentra-

tion.  Flory assumes the concentration to be everywhere the same inside the coil (a much simplify-

ing approximation).  Flory assumes c  N/R3 in the second step. 

− The probability of two segments hitting each other is proportional to the volume of the segments, 

vb3.  More precisely, it is proportional to the “excluded volume” (section 6). 

− The total energy in the overlap must be proportional to the volume of the coil, which is 

4/3 R3  R3. 

That the prefactor should be kBT per exclusion (as opposed to, say, 10−6 kBT) requires some hand-

waiving.  Consider the pressure-volume work in the ideal gas, which is  −pdV =  −nRT/V dV = 

−NkBT/V dV.  N = NAn is the number of particles.  In condensed matter (ignore the difference between 

a gas condensed matter), the volume is V = Nvb3 with vb3 the volume per particle.  If dV also is equal 

to vb3 (ignore the minus sign), the term pdV turns into kBT.   

Flory equates the two energies: 

Eq. 5.22 

Some algebraic manipulation leads to 

Eq. 5.23 

Remember 

− Self-avoidance leads to a loss of entropy and hence to an increase in free energy. 

− The increase in free energy is kBT per exclusion. 

− Equating the energies contained in self-avoidance and in swelling, Flory arrived at a Flory expo-

nent of 3/5.  

  

2
3 2 3 3 3
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6 Interactions between segments 

6.1 The 2nd virial coefficient 

Formally, the 2nd virial coefficient is related to the osmotic pressure.  However, the 2nd virial coef-

ficient is of much importance beyond osmosis.  It quantifies the degree, to which segments repel or 

attract each other.  If they repel each other, the chain swells and takes up solvent.  This provides the 

link to osmosis.  The interaction is more important than osmosis. 

On a fundamental level, the osmotic pressure obeys  

Eq. 6.1 

Note the analogy with ordinary pressure (p = −(dU/dV)S because dU = −pdV + TdS).  The mixing en-

tropy is 

Eq. 6.2 

1 and 2 denote the majority component (the solvent) and the minority component (the polymer).  x is 

the mole fraction.  Note: If the mass concentration of the polymer in units of g/L is known (it often is), 

the polymer mole fraction is only known if the molecular weight is known, as well.   

For small concentration, the van t'Hoff equation predicts: 

Eq. 6.3 

In the dilute limit, the osmotic pressure depends only on the particle number (equivalent to amount of 

substance) of the minority component(s).   is a "colligative property”.  Note again the analogy with 

the ideal gas (p = RTn/V).   

We stay with the van t'Hoff equation for one more paragraph.  For polymers, the number density 

of chains is given as  

Eq. 6.4 

c is the concentration in units of g/L.  It follows that the molecular weight Mn can be calculated from 

the osmotic pressure.  Mn = (i niMi)/(ini) is the number-averaged molecular weight (to be distin-

guished from the weight-averaged molecular weight as determined in static light scattering).30  Note: 

Short chains generate a large osmotic pressure because the short chains are the numerous chains (as-

suming a fixed mass concentration). 

                                                      
30 Why, exactly, osmometry determines the number-averaged molecular weight, is not quickly explained. 
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If the chains are even moderately long, their number of chains is small even if the volume fraction 

is substantial.  The 1st term of virial expansion then often is small and one must take the 2nd term into 

account.  First to the general case: One writes: 

E. 6.5 

B2 is the 2nd virial coefficient.  It quantifies the influence of pair interactions on the osmotic pressure.  

That we deal with pair interactions, can be seen from the fact that B2 is a coefficient to (n/V)2.  (n/V)2 

governs the probability that two particles meet.   

B2 has the dimensions of volume/mol.  B2 is also called "excluded volume", where "effective ex-

cluded volume" would be the more accurate term.  In simple models (without attractive interactions), 

B2 is the molar volume of the solute.  In the context of polymers, one often writes B2 = NAvb3 with v 

the "excluded volume parameter".  v is a dimensionless number of order 1.  (v may be negative.) 

Again, the molecular weight often is not known, a priori.  However, osmometry determines both 

the molecular weight and the second virial coefficient.  We leave that mathematics aside.  For poly-

mers, the virial expansion is written as:  

Eq. 6.6 

c is the concentration in units of g/L.  A2,w is the "mass-based 2nd virial coefficient".  For how A2,w is 

linked to v, see Eq. 6.14.  The unit is m3 kg−2 mol−1. A2,w does not depend on molecular weight.  Nu-

merical values are tabulated in the polymer handbook for many polymer-solvent pairs.  A2,w depends 

on temperature.  

A2,w can be determined via osmometry.  An alternative is static light scattering (more generally: 

are scattering methods).  The more positive A2,w, the lower the tendency of the solution to build up 

concentration fluctuations.  Scattering methods make concentration fluctuations visible in one way or 

another.  When the 2nd virial coefficient is negative, the system tends to segregate (depending on the 

molecular weight: long chains flocculate immediately, shorter chains somewhat later). 

6.2 The -parameter and the excluded volume parameter, v 

One might think that the 2nd virial coefficient was zero for "ideal" conditions.  However, the 2nd 

virial coefficient is not zero, if the mixing enthalpy, mixH, vanishes.  We take a step back and discuss 

some elements of the "regular solution theory".  In regular solution theory mixH is approximated as  

Eq. 6.7 

x1 and x2 are the mole fractions.  This hypothesis was guided by the pair interaction.  The probability 

of molecules "1" and "2" meeting each other is proportional to the product of the mole fractions.  

When the experiment disagrees with this assumption (if often does so, slightly) the -parameter be-

comes a function of concentration.   

1 2

mix H
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In order to let  be dimensionless number of order unity, mixH was divided by nRT.  (The 2nd 

virial coefficient was divided by NAb3 with the 

same goal.  This leads to the parameter v.)  The 

-parameter is often (but not always) larger 

than zero.  It is rarely much larger than 1.  In 

regular-solution theory, the interactions have 

no influence on the mixing entropy.  Also, the 

mixing volume is assumed to be zero.   

Defining the -parameter this way is not 

meant to say that mixing enthalpy actually was 

proportional to temperature.  On the contrary, it 

is not and  therefore is a function of tempera-

ture.  It often decreases with increasing temper-

ature, meaning that the solubility increases 

with increasing temperature.   

If  becomes a function of composition, 

the predictive power of regular-solution theory 

is not all that great.  It is still common to use 

the -parameter when discussing solutions and 

mixtures rather than mixH(x1,x2,T).  That is a 

matter of language, mostly.  The Polymer 

Handbook contains numerous tables on how the -parameter of certain polymer-solvent pairs depends 

on temperature and polymer concentration.  

For the free enthalpy of mixing, regular solution theory predicts 

 Eq. 6.8 

In the context of polymers, the mole fraction, x, is usually replaced by the volume fraction,  

Eq. 6.9 

The volume of a segment is assumed to be b3.  Moreover, the chain segments and the solvent mole-

cules have the same volume.  nchain is the number of chains.  N is the number of segments per chain 

and V is the total volume.   

Using volume fractions instead of mole fractions, the free enthalpy of mixing is 

Eq. 6.10 

The derivation is shown in Box 6.1.  For the polymer in the solvent, 2 is renamed as pol = .  The re-

lation 1 = 1 − 2 = 1 −  leads to 

( )1 1 2 2 1 2ln lnmix mix mixG H T S nRT x x x x x x =  −  = + +   

3

chainb n N

V
 =  

1 1 2 2 1 2

1
ln lnmixG nRT

N

 
 =   +   +   

 
 

 
Fig. 6.1 

The competition between a positive enthalpy of mixing 

and a negative entropy of mixing leads to the character-

istic double-well structure in the plot of mixG versus 

composition. 

www.researchgate.net/figure/Mixing-free-enthalpy-D-

mG-mixing-enthalpy-D-mH-and-mixing-entropy-term-

TD-mS-for_fig1_357598481 



20 

 

 Eq. 6.11 

A side remark: When two polymers are mixed, there is a factor 1/N before both parts of the en-

tropic term.  The mixing entropy is small because the number of chains is small.  Two polymers rarely 

mix well.31  Copolymerization must be employed instead.32  

                                                      
31 When mixing two polymers by stirring and cooling this mixture to below the glass temperature, one obtains a „polymer 

blend“.  A polymer blend consists of well interspersed phases of the two species.  These are kinetically stable because the 

sample does not flow. 
32 Do not confuse copolymerization with „alloying“ as practiced with metals.  Alloys often have properties much different 

from the constituents.  (Think of the permanent magnets composed of Nd2Fe14B.)  That does not happen with polymers.  

The properties of mixtures or copolymers usually are in-between the respective properties of the constituents. 

( ) ( ) ( )
1

ln 1 ln 1 1mixG nRT
N

 
 =   + −  −  +  −  

 
 

 

 

Box 6.1:  Derivation of Eq. 6.10. 

Rubinstein/Colby: "Polymer Physics", Oxford University Press 2003 
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The calculation of the derivative dmixG/dV is tedious.  It is reproduced in Box 6.2.  It is found that 

Eq. 6.12 

In the 2nd step, the term proportional to 1/N was neglected.  In the 3rd step the "excluded volume pa-

rameter", v, was introduced as  

Eq. 6.13 

Sometimes “v” also is the excluded volume (“v” = (1−2)b3). 

A few further remarks: 

− v can be negative if there are attractive interactions.   

− V and the "mass-based 2nd virial coefficient" (Eq. 6.6) are related as 
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Box 6.2: Derivation of Eq. 6.12. 

Rubinstein/Colby: "Polymer Physics", Oxford University Press 2003 
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Eq. 6.14 

M0 is molecular weight of a segment.   

− It is not true that the second virial coefficient would vanish at zero enthalpy of mixing.  There are 

two separate meanings of in „ideal“.  Ideal can either mean dmixH = 0 or mean v = 0. 

If the v < 1, there is an attractive interac-

tion between the segments which lowers the 

excluded volume.  Pseudo-ideal behavior re-

sults when  = =1/2.  This is the „-condi-

tion".  At the -point, chains in a solvent obey 

the ideal random-walk statistics (synonymous 

to Gaussian statistics).  Otherwise, they fol-

low the self-avoiding random walk.  At the 

-point, RE scales as N1/2.  In a good solvent, 

it scales like N with   0.588 the Flory ex-

ponent.  For the collapsed single chain in the 

bad solvent, it scales like N1/3, because the 

sphere radius scales as V1/3 with V the sphere 

volume (but in this case the polymer usually 

precipitates).  For an experimental example, 

see Fig. 6.2. 

6.3 Phase separation, USCT and LCST behavior 

At v < 0, chains become compact, but that is not often observed in experiment, because the poly-

mer-rich phase precipitates.  There is demixing with a critical point.  Because of the 1/N-term in Eq. 

6.11, the critical polymer volume fraction lies to the left in the diagram.  crit is less than 1/2.  The 

higher the molecular weight, the lower is crit (see Fig. 6.3).  

If the -parameter would not depend on temperature,  Eq. 6.11 would be athermal in the sense 

that the temperature was a prefactor and that the balance between the different terms therefore was not 

affected by temperature.  However, the enthalpy of mixing is not 

usually proportional to T.  (Why should that be so.)  In consequence, 

 is a function of T.  In organic solvents, the mixing entropy favors 

mixing at high temperature and precipitation at low temperature.  

The USCT is the “upper critical solution temperature”.  The tempera-

ture scale might converted into a -scale, where high temperature 

corresponds to low .  The larger the molecular weight, the closer is 

crit to 1/2. 

In water the hydrophobic interaction increases in strength at 

high temperature because of its entropic origin.  Water-soluble poly-

mers often precipitate at high temperature, which leads to LCST be-

havior (LCST for “lower critical solution temperature”).  Fig. 6.3 

elaborates on UCST and LCST behavior. 
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Fig. 6.3 

UCST and LCST behavior 

www.researchgate.net/figure/The-UCST-

and-LCST-of-water_fig12_299584220 

 
Fig. 6.2 

G. Strobl: The Physics of Polymers 
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Remember 

− For polymers, the mixing entropy tends to small because the small number of chains (compared to 

small molecules). 

− Two polymers are rarely miscible for that reason. 

− The 2nd virial coefficient is important for that reason.  The 2nd virial coefficient quantifies the inter-

actions between segments (repulsive, attractive, or neutral). 

− The 2nd virial coefficient can be expressed in terms of the parameters A2,w, , or v. 

− At v = 0 (equivalent to  = 1/2) polymer solutions are pseudo-ideal (the -condition). 

−  usually depends on temperature.  At large , there is phase separation.  For large molecular 

weight, the critical point is at low polymer volume fraction and at  slightly larger than 1/2. 

− There is both UCST and LCST behavior.  
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7 Elastomers 

7.1 Affine deformation  

When modeling the mechanics of networks, one builds on the spring constant of the single chain.  

In the affine network, the crosslinks do not fluctuate.  They are displaced in the same way as the entire 

sample is deformed, macroscopically.  In a first step, we derive the shear modulus this network.  The 

deformation is quantified in terms of relative extensions, x ,y, z.  The undeformed medium has 

x = y = z = 1.  The following text closely follows section 7.2.1 from Rubinstein/Colby with some 

omissions.   

The entropy of a single deformed network strand33 is  

Eq. 7.1 

For the entire network, we have  

Eq. 7.2 

n is the number of network strands.  For the averages in Eq. 7.2 we have  

Eq. 7.3 

The factor of 1/3 occurs because the sum of all three terms to the left equals Nb2.  Inserting Eq. 7.11 

into Eq. 7.2 leads to 

Eq. 7.4 

The increase in free energy is  

Eq. 7.5 

                                                      
33 A network strand is a chain linking two crosslinks. 
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Consider extension along x, let the medium be incompressible, and rename x as . 

Eq. 7.6 

The restoring force created by the deformation is  

Eq. 7.7 

The “true” stress (to be distinguished from the engineering stress, see Eq. 7.15) is  

Eq. 7.8 

The small deformation limit, one writes  = 1 +  with  << 1.  Start from Eq. 7.14, use C2 = 0, and 

Taylor expand the result in : 
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Box 7.1:  Is the pressure of the ideal gas of en-

tropic origin? 

 

We have twice encountered expressions, which 

resembled the ideal gas law (Eq. 6.3 and Eq. 

7.10).  In both cases, entropy caused a pressure 

or a stress.  Can the pressure of the ideal gas 

also be traced back to entropy?  That depends 

on whether the expansion occurs adiabatically 

of isothermally.  In the reversible adiabatic ex-

pansion, dS = 0 and one writes 

d

d S

U
p

V

 
= − 

 

 

In this case, the pressure is caused by the kinetic 

energy.  Deriving the ideal gas law from this re-

lation is a bit tedious.  The algebra is provided 

in box 8.2 in the notes of Physical Chemistry I. 

 

For the isothermal expansion, one writes 

d d d

d d dT T T

A U S
p T

V V V
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(dU/dV)T is zero for the ideal gas.  The kinetic en-

ergy of the ideal gas does not depend on volume.  

The entropy of the ideal gas is given by the 

Sackur-Tetrode equation: 

( )3

3

5 5
ln ln ln

2 2B

S V
V N

k N N
= + = −  +



 

The thermal wavelength, , does not depend on V.  

The differentiation leads to 

( )
d d

ln
d d

B

B

T T

k TS nRT
p T T k N V N

V V V V

   
= = = =   

   

 

This is the ideal gas law. 

 

To answer the question: The pressure of the ideal 

gas is of entropic origin, when T is maintained con-

stant.  

 

A similar argument can be made for the relation 

G = RT.  If stretching is done adiabatically, the 

temperature increases.  When the rubber band is 

reversibly relaxed, the temperature decreases. The 

work, which it does while bringing the two ends 

holding it closer together, is extracted from the ki-

netic energy of the network strands wiggling 

around. 
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Eq. 7.9 

The Youngs modulus E = xx/ was introduced in the last step.  Without proof we report that E = 3G 

for incompressible media.  This leads to 

Eq. 7.10 

The shear modulus is kBT times the density of network strands (called  on the right-hand side).  Note 

the similarity to the ideal gas law.  Compare to Eq. 6.3 and also see Box 7.1. 

Remember 

− For the affine network, one has G = n/V kBT =  kBT with the number density of network strands. 

 

 

7.2 The Mooney-Rivlin formalism  

Money and Rivlin write the deformation energy as a function of “invariants” of x ,y and z.  As-

suming isotropy, the strain energy cannot depend on any of these parameters alone.  Rather, it must 
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depend on invariants derived from these parameter, which do not depend on orientation.  Because 

there are three parameters, there also are three invariants.  Mooney and Rivlin choose them to be34 

Eq. 7.11 

For the incompressible medium, I3  1.  The strain energy density, 

A/V, is written as  

Eq. 7.12 

The strain energy turns into  

Eq. 7.13 

The “true stress” is 

Eq. 7.14 

Comparison with Eq. 7.8 shows that the affine network model predicts 2C1 = G  and C2 = 0 

To be distinguished from the true stress is the “engineering stress”, which is a stress corrected for 

the shrinkage perpendicular to the pulling direction.  It is ratio of the force to the area of the unde-

formed specimen.  The engineering stress is easily derived from the force,35 while the true stress is not.  

Eq. 7.15 

In the simplest model, C2 is assumed to be zero, which leads to  

Eq. 7.16 

                                                      
34 The parameter x + y + z would be invariant under rotation by 90°, but not under rotation by 45°. 
35 In such experiments, the sample usually is held by grippers at the end.  These do not contract, laterally. 
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Fig. 7.1 shows experimental data together with a fit.  The curve is slightly curved downwards (see 

also Fig. 7.2).  The material is stiffer under compression than under extension.   

Eq. 7.17 

Plotting the left hand side versus 1/ should lead to horizontal lines if the affine network model was 

rigorously correct..  However, a positive slope is usually found (Fig. 7.3).  The affine network model 

is not quite correct.  Firstly, the crosslinks must be allowed to fluctuate.  Also, those fluctuations are 

constrained in various ways.  Entanglements (section 8.6) also play a role. 

Fig. 7.2 shows a force-extension curve obtained on a piece of rubber.  The nonlinearity has differ-

ent sources:  

− The strands between cross links cannot be stretched to beyond the contour length (section 5.5). 

− The rubber band becomes thinner as it is stretched.  The downward curvature at low extension is 

the consequence of “neo-Hookean” elasticity (Fig. 7.1). 

− There is strain-induced crystallization. 

Remember 

− The affine-network model does not quite match experiment.  Fluctuations of the crosslinks and 

constraints thereof play a role. 

− One source of nonlinearity in the stress-strain relation is the fact that the specimen becomes thinner 

as it is stretched. 

− The finite chain length and strain-induced crystallization are further sources of nonlinearity. 

7.3 Aging and wear 

In networks, the strands connecting the crosslinks are not all equally long.  The shortest strands 

are under the largest tension.  In consequence, the shortest chains break first.  Rubbers age.  The prob-

lem is known to car owners, who pay for the replacement of the timing belt (German: Zahnriemen) 

before it actually breaks.  

Rubbers age, but there is no crack propagation as in ceramic materials.  The strands carry the 

stress away from the crack tip, thereby avoiding a sharp maximum in stress at the crack tip.  Strength 

and durability of elastomers and gels are topics of much current research.  Careful control of the de-

gree of crosslinking and the length of the chain between crosslinks (as well as the distribution thereof) 

helps.36  Additives help.  Additives include fillers (soot in the case of tires).  If wear cannot be avoided 

in total, controlled and predictable wear is less problematic than catastrophic failure.  This is achieved 

for tires (and also for the engines of cars).   

Remember 

− Because the shortest chains break first, rubbers age. 

− Rubbers do not show brittle fracture (similar to most metals) because the chains carry the stress 

away from the crack tip. 

                                                      
36 In the case of gels, the „double networks“ have been successful.   
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7.4 Thermoplastic elastomers 

Covalent chemical crosslinks are permanent.  In order to mold elastomers into a desired shape at 

elevated temperature, crosslinks are needed, which dissolve at elevated temperature.  This cen be 

achieved with triblock-copolymers, where the terminal blocks 

phase-separate from the middle blocks, thereby forming physical 

crosslinks at a temperatures below the glass temperature of these 

islands.  Styrene-butadiene-styrene rubber (SBS rubber, Fig. 7.4) 

is one of these materials.  

 
Fig. 7.4 

The styrene end blocks of SBS 

rubber form physical crosslinks  

en.wikipedia.org/wiki/Thermo-

plastic_elastomer 
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8 Chain dynamics  

8.1 Dynamics of the single sphere 

We prepare for the discussion of chain dynamics by collecting some relations for spheres.  Fol-

lowing Einstein and Smoluchowski, the mean-square displacement (MSD) achieved by Fickian diffu-

sion is  

Eq. 8.1 

D is the diffusivity.  The sedimentation of the sphere under the influence of gravity obeys 

Eq. 8.2 

f is the force (of gravity or of some other origin).  v is the velocity,  is the friction coefficient.  

When  pertains to a segment of a chain, it is called “monomer friction coefficient”.  For spheres of 

radius R the friction coefficient is 6SR, following the Stokes law, but we stick to .  (S is the vis-

cosity of the solvent, as opposed to the viscosity of the polymer solution.)  According to the fluctua-

tion-dissipation theorem, D and  are related as  

Eq. 8.3 

If  = 6SR, Eq. 8.3 is equivalent to the Stokes-Einstein relation.   

Diffusion is linked to a characteristic time, , which is the time needed to let the MSD be equal to 

the square of the size of the object under study (this size being called “R” in the following) 

Eq. 8.4 

Eq. 8.4 follows from Eq. 8.3, where a factor 6 was ignored.   

The friction coefficient is a function of the viscosity of the ambient medium, S, and the size of 

the object R.  Looking at the dimensions, one finds that this relation must be 

Eq. 8.5 

Numerical factors (like the factor 6 in the Stokes law) have been neglected.37       

Remember 

− The fluctuation-dissipation theorem predicts D = kBT/. 

− There is a characteristic time of diffusion, which is  = R2/D with R the size of object in question. 

                                                      
37 Kirkwood and Risemann have analyzed this situation and state that the hydrodynamic radius of polymer coils was about a 

factor 2/3 smaller than Rg, that is, they arrive at D = kBT/(4SRg). 
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− The friction coefficient is about SR. 

8.2 The Rouse model 

Rouse depicts the chain as an assembly of springs and beads (Fig. 8.1).  For the motion of the en-

tire chain, the friction coefficient simply is the sum the friction coefficients of the spheres 

Eq. 8.6 

The subscript R stands for “Rouse”.  The diffusivity follows as  

Eq. 8.7 

The characteristic time (the “Rouse time”) is 

Eq. 8.8 

Assuming a Gaussian chain,38 the radius, R, obeys  

Eq. 8.9 

We arrive at 

Eq. 8.10 

This discussion is limited to time scales larger than R.  For shorter time scales see the text around Fig. 

8.3 and Fig. 9.5. 

Remember 

− The Rouse model is a bead-spring model. 

− The Rouse model applies to short chains in a melt (German: “durchspültes Knäuel”).   

− The friction coefficient of the entire chain is N with  the monomer friction coefficient. 

− The Rouse time scales as N2. 

8.3 The Zimm model 

The Zimm model applies to chains in a solvent.  It assumes that the solvent molecules are trapped 

inside the coil.  More specifically, the segments of the chain mostly interact hydrodynamically.  Why 

hydrodynamic interaction entails trapped solvent is not easily explained.  Other chains in a melt are 

not trapped in the same away  The Rouse model applies in the melt for reasons, which again are not 

easily explained.  The explanation is one of the achievement of polymer science from the second half 

                                                      
38 It will turn out that the Rouse model holds in the melt.  In the melt, chains obey Gaussian statistics (ideal random-walk 

statistics). 
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of the last century.  There is an analogy to the size of chains in the melt, which obeys ideal random-

walk statistics.   

When the solvent is trapped, the chains behaves like a sphere with radius R.  The friction coefficient is 

Eq. 8.11 

(A factor of 4/3) was neglected.  The subscript Z stands for Zimm.  The radius, R, and the chain 

length, N, are related as  

Eq. 8.12 

The exponent, , here may be either 0.5 or 0.588, depending on the solvent quality.  It is 0.5 in the 

-solvent and 0.588 in the good solvent.  The diffusivity follows as 

Eq. 8.13 

The Zimm time is 

Eq. 8.14 

Remember 

− The Zimm model also is a bead-spring model, but the solvent molecules are locked to the chain 

(German: “undurchspültes Knäuel”).   

− The friction coefficient of the chain is SR3. 

− The Zimm time scales as N3. 

8.4 Intrinsic viscosity, the Mark-Houwink relation 

In the discussion of the viscosity of dilute solutions, one usually focusses on the “intrinsic vis-

cosity”, which is  

Eq. 8.15 

[] has dimensions of an inverse concentration (L/g).  Before coming to polymers, we briefly recall 

Einstein’s prediction for the viscosity of a solution containing dispersed spheres,39 which is  

Eq. 8.16 

                                                      
39 We deviate from the discussion in Rubinstein/Colby here. 
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 = V̄Sph/(Mchain/NAvo) c is the volume fraction.  V̄Sph is the volume of the sphere.  Mchain is the molecular 

weight of the chain in units of g/mol.  c is the concentration in units of g/L.  Converting from  to c in 

Eq. 8.16 leads to 

Eq. 8.17 

For the intrinsic viscosity, we find 

Eq. 8.18 

In practical terms, the “Mark-Houwink relation” states that 

Eq. 8.19 

K is a constant (determined by calibration ).  M is the “viscosity-averaged molecular weight”.  The 

Mark-Houwink exponent, , is equal to 3−1.  For -solvents  is 0.5. In good solvents,  increases 

because the chains swell.   then takes values in the range of 0.7 − 0.8.   

Approximations have entered this derivation.40  In particular, the softness of the coils was ig-

nored.  In experiment, the Mark-Houwink exponent varies.  It is not strictly equal to 3 −1. 

Remember 

− The intrinsic viscosity is defined as the low-concentration limit of (−S)/(cS). 

− The Einstein relation predicts  = S(1 + 5/2 +…).   

− Converting between  and c, one finds []  N3−1 for a dilute solution of polymer coils. 

8.5 Viscosity of short-chain melts 

We first report a relation for the steady-shear viscosity: 

Eq. 8.20 

G(t) is the ratio of stress to strain after a step in strain. We assume a “viscoelastic liquid”, meaning that 

the stress eventually decays to zero.  For simplicity, we approximate the integral as   

Eq. 8.21 

                                                      
40 Strobl in the reference from footnote 4 says the „hydrodynamic radius“ to be used here was 7/8 Rg.  That is interesting, 

because the hydrodynamic radius entering the Stokes-Einstein relation is 2/3 Rg.  The two should be the same, following 

the fluctuation dissipation theorem.  Strobl says that things evidently are a bit complicated.  Rubinstein/Colby derive the 

Mark-Houwink relation in an entirely different way – which, however, is not very accessible.  They appear to be aware of 

the problem and avoid it, rather than discussing it.  
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We are only interested in the dependence of the viscosity on N.  Following rubber elasticity, the char-

acteristic shear modulus will be proportional to kBT/(Nb2), that is, will scale as 1/N.  From equation Eq. 

8.10, R  N2.  It follows that  

Eq. 8.22 

The viscosity according to Eq. 8.22 applies on time scales larger than R.  For shorter time-scales (that 

is, at higher frequencies) see Fig. 9.5. 

Remember 

− The viscosity has dimensions of a shear modulus multiplied by a relaxation time. 

− For the Rouse model, one finds   N 

8.6 Long chains in the melt: reptation 

If the chain length exceeds a certain threshold, the entanglements influence the flow behavior.41  

The transition is, for instance, seen in plots of log() versus log(M) (Fig. 8.2).  There is a kink at the 

"entanglement molecular weight".  Below the kink, the slope is 1 (i.e.   M1 , following the Rouse 

model, section 8.5).  Above the kink, the slope is 3.4 (  M3.4).  The dynamics of polymers with en-

tanglement is described by reptation theory.  All of the entanglements create a tube in which the poly-

mer moves ("reptates") like a snake (Fig. 8.4).   

The consequences of reptation can be illustrated in a plot of log(MSD) versus log(t) (Fig. 8.3).  

MSD is the mean-square displacement (cf. Eq. 8.1).  On time scales longer than all characteristic times 

(to the right in Fig. 8.5), chains move following Fickian diffusion.  The MSD is proportional to t, as 

expressed in Eq. 8.1.  The slope in the log-log plot is 1.  On short time scales, the segments move fol-

lowing the Rouse model.  We expand on the discussion of the Rouse model in section 8.2 here, in that 

we discuss times smaller than the Rouse time.  We deviate from Rubinstein/Colby and provide a much 

                                                      
41 The transient entanglement network is also visible in the rheological spectra (section 9).   
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simplified argument of why the MSD should scale as t1/2 on short time scales.  The random motion of 

the segments of chain is a collective motion of a few segments.  The larger the MSD, the more seg-

ments must move cooperatively to achieve this displacement.  Start from Eq. 8.1, but let the effective 

diffusivity be a function of the MSD: 

Eq. 8.23 

Following Eq. 8.7, the effective diffusivity is kBT/(N) with N the number of segments contributing to 

the motion.  Following random-walk statistics, N is proportional to the MSD, which leads to 

Eq. 8.24 

Solving the for MSD, one finds that the MSD is proportional to t1/2. 

 

 

Rouse-type motion proceeds until the segments hit the wall of the tube.  The tube (the “primitive 

path”) itself obeys random-walk statistics.  The segments 

now move according to the Rouse model, but they do so on 

the curvilinear primitive path.  The shape of the primitive 

path adds another factor of 1/2 to the exponent in the relation 

linking the MSD to time.  In this regime, the MSD scales as 

t1/4.  At the Rouse time, Rouse-type diffusion turns into Fick-

ian diffusion and the factor of 1/2 in the exponent related to 

Rouse-type motion turns into 1.  Motion still occurs inside 

the tube, meaning that the MSD scales as t1/2.  At the disen-

tanglement time, D, the chain leaves its tube (Fig. 8.5).  From 

thereon, diffusion is Fickian. 

Fig. 8.5 is idealized in a few ways.  It is difficult to nail 

down experimental evidence for this curve for one single sample.  (Note the wide range of time 

scales.)  Still, the concept of reptation as such is widely accepted and has gained experimental support.  
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Fig. 8.5 

A chain leaves its tube within the disentanglement 

time, D. 

G. Strobl: The Physics of Polymers 

 
Fig. 8.3 

Mean-square displacement versus time in the dif-

ferent regimes. 

 
Fig. 8.4 

Entanglements create a tube 

www.researchgate.net/figure/a-Schematic-repre-

sentation-of-a-polymer-chain-entangled-with-

neighbouring-chains-b_fig5_341652080 
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We now come back to the exponent of 3.4 for the long chains in Fig. 8.3.  Following the argu-

ment that the viscosity is product of a shear modulus (of the order kBT/b3) multiplied with a relaxation 

time, we need to estimate the disentanglement time, D.  D is given as Lpp
2/DRouse with Lpp the contour 

length of the primitive path, which is proportional to N.  Given that DRouse  1/N following Eq. 8.7, 

this leads to  

Eq. 8.25 

The exponent found in experiment is 3.4 rather than 3, which has to do with the fact that parts of the 

chain occasionally leave the tube.  The technical term is “constraint release”. 

Fig. 8.6 collects entanglement parameters for selected polymers.  

Remember 

− Long chains in the melt move slowly because of the entanglement.   

− The viscosity is correspondingly high. 

− Entanglements are among the characteristics of pol-

ymers. 

8.7 The viscosity at large deformation rates 

There are rather intricate analytical theories of 

polymer flow, which produce fair agreement with ex-

periment.  For branched polymers, people mostly rely 

on simulations.  (Simulations require assumptions, sim-

ilar to analytical theories.)  In some cases, the simula-

tions reveal insights which are general and which can a 

posteriori by justified with general arguments.  In other 

cases, the simulations stay close to some problem.  

Once the answer is on the table, the practitioner accepts 

this one answer, not searching for more general insight.   

This section concerns a side remark on nonlinear 

rheology.  In linear rheology, there is not much of a dif-

ference between shear flow and elongational flow.  The 

 

Fig. 8.6 

Entanglement parameters for selected 

polymers.  Gc is the height of the rub-

ber plateau in Fig. 9.2.  Me is the en-

tanglement molecular weight.  Ne is 

the number von Kuhn segments (with 

length b) pertaining to a coil, which 

fits into the tube.  a is the diameter of 

the tube. 

from Rubinstein/Colby 
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On shear thinning and strain hardening under elonga-

tion. 

G. Strobl: The Physics of Polymers 
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two viscosities are related by a factor of 3.  This is different at high deformation rates (Fig. 8.7).  In 

shear, the viscosity decreases (“shear thinning”).  That is important, because the strain rate for a flow 

in the tube is highest at the wall.  The viscosity decreases, which – under a constant overall pressure 

gradient along the tube – further increases the strain rate.  There is positive feedback, which eventually 

results in plug flow (as in tooth paste).  Shear thinning is very important for polymer extrusion. 

Under elongational flow (unidirectional or bidirectional, spinning fibers or blowing films), the 

viscosity increases at high deformation rate.  That is important because it stabilizes the fibers and the 

lamellae.  Long-chain branching enhances this effect. 

Remember 

− At large deformation rates, there is shear thinning (shear flow) and strain hardening (elongational 

flow).  Both are of much practical importance in polymer processing. 

8.8 In polyelectrolytes, viscosity may increase with decreasing polymer concentration 

The viscosity of polyelectrolytes (of charged chains) is special in that the viscosity sometimes de-

creases as the polymer concentration increases.  This is surprising at first glance.  The phenomenon is 

known as the "polyelectrolyte effect".  The solution to the puzzle lies in the numerous counter ions.  

At high concentrations, these lead to a small Debye length and, in consequence, to an electrostatic 

screening of the interaction between ions on the chain.  The charged chain stretches at low concentra-

tions (and in the absence of added salt, Fig. 8.9)  because of the increased inter-charge repulsion.  This 

is why the viscosity increases at low concentrations (Fig. 8.9).  This effect is stronger than the effect of 

dilution (which also exists). 

 

 

Strictly speaking, this is an effect of geometry.  The dynamics follows geometry.  The coil diame-

ter increases with decreasing concentration (and decreasing concentration of the counter ions). 

Remember 

− In polyelectrolytes, the counter ions screen the electrostatic interactions.  This affects the coil size 

and the viscosity.  

 

Fig. 8.8 

G. Strobl: The Physics of Polymers 

 

Fig. 8.9 

G. Strobl: The Physics of Polymers 
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− Because the concentration of the counter-ions decreases with decreasing polymer concentration, the 

electrostatic interaction between the charges on the chain increases.  In consequence, the viscosity 

may increase with decreasing polymer concentration. 

  



39 

 

9 Linear polymer rheology 

Rheology is the science of how materials flow.  Rheology can be enormously complicated and, 

also, be enormously interesting.  In particular, there is a link between structure and flow.  A recom-

mended book in this regard was written by R.G. Larson and is entitled “The Structure and Rheology of 

Complex Fluids”.  R.G. Larson is a rheologist and certainly knows his craft.  The book is about rheol-

ogy, yes, but Larson’s heart is with the structure as much as with the flow.   

We cannot to elaborate on rheology in all its beauty here.  The rheology of polymers often is 

nonlinear, meaning that the ratios of stress to strain (or to strain rate) depend on the strain (or the strain 

rate).  Nonlinear rheology is al-

ways discussed against the back-

ground of linear rheology.  In lin-

ear rheology, the strain and the 

strain rate are maintained small 

enough to ensure linear stress-

strain relations.   

Linear rheology is dis-

cussed in some length in the notes 

on soft condensed matter.  The 

discussion is not repeated here.  

We collect a few results. 

− We mostly discuss shear deformation and the shear modulus G.  In linear rheology, there are sim-

ple relations between the G and E, where E is the Youngs modulus, describing elongation.  (These 

simple relations break down in nonlinear rheology.) 

− The modulus of compression mostly is much larger than G.  Soft 

matter mostly is incompressible. 

− For soft matter (synonymous to complex fluids), there is an evolu-

tion of stress after a step in shear strain (cf. Eq. 8.20).  The ratio of 

the two is the time-dependent shear modulus, G(t).  

− From an experimental point of view, the study of linear rheology is 

easier in the frequency domain than in the time domain.  Excita-

tion occurs with sine waves of variable frequency, , where the 

values of  span a few decades.   The shear modulus turns into a 

complex function of frequency G̃() = G() + iG().  G is the 

storage modulus (related to elastic behavior).  G is the loss modu-

lus (related to viscous behavior).   

− The fact that G̃() depends on  is called “viscoelastic disper-

sion”.  Strong viscoelastic dispersion is indicative of relaxations 

with rates comparable to the inverse of the respective frequency. 

− An idealized viscoelastic liquid (a Maxwell-type liquid) only has 

one relaxation time.  The equivalent circuit (a spring in series with 

a dashpot) is shown to the left in Fig. 9.1.  The rheological spec-

trum has a broad maximum in G() at the inverse of the relaxation time, which is  = / with  

the spring constant of the spring and  the friction coefficient of the dashpot (cf. Eq. 8.21).   

 

 
Fig. 9.1 

The Maxwell model is the simplest model of a viscoelastic liquid.  The me-

chanical equivalent circuit is shown to the left.  The loss modulus has a 

broad maximum on the inverse relaxation time. 

lsinstruments.ch/en/theory/rheology/maxwell-model 

Box 9.1: Rheological spectrum of the 

Maxwell fluid 

To understand the viscoelastic spectrum 

of the Maxwell-fluid, compute the effect 

spring constant of the Maxwell element.  

In mechanics, inverse spring constants are 

additive when elements are placed in se-

ries.   

The effective complex spring constant is 
1 1 1

ieff

= +
  

 

It follows that  
i i i

i 1 i
1 i

eff

   
 = =  = 

 +  + 
+ 



 

 = / is the relaxation time.  Separate 

the real from imaginary part as  

( )
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2 2 2 2

i 1 i

1 i 1 i
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1 1
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 − 
 = 
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  
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+   +  
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− Time-temperature-superposition (TTS) sometimes holds.  If it holds, increasing the frequency of 

the measurement is equivalent to decreasing the temperature of the sample.  Rather than speeding 

up the measurement, one slows down the dynamics in the sample.  The way, in which “master 

curves” are created based on TTS, is illustrated on the right-hand side in Fig. 9.2.  Fluids, for which 

that works, are called “thermorheologically simple”.  Leaving complication aside, TTS works if the 

temperature dependence of G is entirely the consequence of a temperature dependence of the mon-

omer friction coefficient (cf. Eq. 8.2).  The shape of G̃() then mostly is the consequence of the 

chain topology.  TTS breaks down when the material crystallizes.42  Fig. 9.4 illustrates that TTS ap-

plies in time-domain experiments, as well. 

Fig. 9.2 shows a rheological spectrum of a long-chain linear polymer.  This plot is remarkable in 

the following regards:  

− The two maxima in G() correspond to the segment relaxation (fast) and to disentanglement 

(slow).  Fig. 9.3 shows how the slow relaxation moves to the left as the molecular weight de-

creases. 

− The value of G on the plateau is characteristic of the density of strands between entanglements.  

Based on Eq. 7.10 (G = kBT with  the density of network strands), the plateau modulus allows to 

infer the entanglement molecular weight (cf. Fig. 8.2).   

− At high frequency (at low temperature), the material is in the glassy state. 

Fig. 9.5 is not of much practical relevance, but we discuss it as a follow-up to the discussion of 

the Rouse model.  The figure shows the rheological spectrum of a Rouse-type fluid.  At low fre-

quency, G and G scale as 2 and , respectively, similar to the Maxwell fluid (Fig. 9.1).  When the 

inverse frequency is larger than the longest relaxation time, the internal dynamics of the chain has no 

effect on the rheology.   

                                                      
42 There are other reasons why TTS might not work or not work well.  TTS does not work well for blends.  TTS does not 

work well when water is involved because the structure of water depends on temperature. 

 

Fig. 9.2 

A rheological spectrum obtained on a melt of long-chain linear polymer. 

from Rubinstein/Colby 
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The internal dynamics is seen at high frequency.  There are many more relaxations times related 

to the motion of parts of the chains as discussed around Eq. 8.24.  Importantly, there is power-law be-

havior.  There is no characteristic time (other than the Rouse time, the inverse Rouse time being the 

lower edge of the scale-invariant regime).  The power-law exponent in the relation of G and G ver-

sus  is 1/2, which is linked to the power-law exponent on the left-hand side in Fig. 8.3. 

Box 9.1 expands on the relation between random motion an viscoelasticity.  

 
Fig. 9.3 

G. Strobl: The Physics of Polymers 

 
Fig. 9.4 

G. Strobl: The Physics of Polymers 

  

Fig. 9.5 

from Rubinstein/Colby 
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Box 9.2:  Nanorheology  

It was repeatedly emphasized that diffusion (more gen-

erally: random motion), on the one hand, and viscoe-

lasticity, on the other, were related.  There is a tech-

nique, which allows to infer the complex viscosity 

̃() and the complex shear modulus G ̃() from the 

random motion of a test particle. 

According to the Green-Kubo relation, the diffusivity 

can be written as 

( ) ( )
0

v v d
t

D t t



= +  
 

The term in angle brackets is the velocity autocorrela-

tion function.  This relation can be extended to finite 

time: 

( ) ( ) ( )
0

v v d

t

t
D t t t= +  

 

 

D(t) can be Fourier-transformed to yield D ̃().  

The Stokes-Einstein relation can be extended to 

this case as  

( )
( )6

Bk T
D

R
 =

 

 

Solve this equation for ̃(): 

( )
( )

( )i 6

B
G k T

D R


  = =

  

 

Clearly, the viscoelasticity in the vicinity of a 

probe (usually a small sphere) can be inferred 

from the sphere’s random motion.  These meas-

urements are most interesting, if the motion is 

complicated (as in Fig. 8.3).  Nanorheology can 

be carried out inside confined spaces (such as bio-

logical cells) 
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10 Glassy polymers 

The glassy state is discussed in some length in the course on soft condensed matter.  Basically, 

glasses are supercooled liquids.  They are amorphous.  Their viscosity is so high that they are solids 

for all practical purposes. 

Polymeric glasses fit into this framework, but are special in a few ways.  First, atactic polymers 

often have "frozen disorder" at the level of the individual chains.  In polymers with a zigzag carbon 

backbone, side groups can point either to the "right" or to the "left".  The way in which this happens is 

called "tacticity".  With random tacticity of polymethyl methacrylate (PMMA) or polystyrene (PS), 

crystallization is impossible.  There is no well-ordered energetic ground state, which would not be 

reached only because the nucleation would be too slow. 

A second special feature of polymers is that they hardly ever crystallize completely.43  They are 

always partially amorphous. The problem is best explained using Fig. 11.2.  In order for the lamella to 

form, the chain must fold back.  These areas are often amorphous.  Chain ends are also often not inte-

grated into the crystallites.  

A third special feature also results from the chain topology.  Polymeric glasses (such as the atactic 

PMMA, Plexiglas) tend to not suffer brittle fracture because the chains prevent this.  The failure be-

havior under mechanical load is complicated and interesting.  There is a yield stress at which irreversi-

ble plastic deformation occurs without immediate fracture.  This has advantages from a technical point 

of view.  On the other hand, the yield stress is lower than the corresponding stress in metals.  Polymer 

glasses are inferior to metals in terms of rigidity, strength, and surface hardness. 

Materials which appear to glassy, may be true glasses, but may also contain nanocrystallites.  

This is tolerable as long as the ordered areas are nanoscopically small.  Crystallites are usually bire-

fringent and the refractive indices differ between the different orientations and, also, between crystal-

line phase and the amorphous phase.  The crystallites scatter light (as we know from ceramics being 

white).  However, the scattering efficiency scales as d6 with d the size of the scattering object.  Nano-

crystallites do not cause the material to become cloudy.  PET used for bottles is semi-crystalline.  The 

advantage of semi-crystallinity here is both the mechanical strength and the reduced gas permeability 

(low oxygen permeability, in particular).  

The gradual solidification and gradual softening of partially amorphous substances is of much 

practical importance.  (Steel also softens before it melts and can be forged in this state.) 

There is much talk of the glass transition being “universal”.  Polymer scientists have disputed that 

for polymers.  The way, in which the degrees of freedom freeze in, is complicated, interesting, and 

specific to the polymer under study.  Polymer glasses mostly appear as amorphous in x-ray scattering, 

but they have intriguing and important local order. 

Remember 

− From a structural point of view, glasses are supercooled liquids. 

− Polymer glasses not usually are ideal glasses.  They are more complicated (and more interesting). 

− The glass transition is a kinetic transition.  The supercooled liquid falls out of thermodynamic 

equilibrium at the glass temperature. 

− Polymers are often partially amorphous (semi-crystalline).  

− Polymers, which appear to be glassy to the eye, may contain nanoscopic crystallites.   

                                                      
43 Single crystals have been grown from polymers.  This is difficult.  These single crystals have no technical application. 
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11 Semi-crystalline polymers 

Most structural polymers (polyethylene, polypropylene) are semi-crystalline.  Most synthetic fi-

bers are semi-crystalline.  Crystallinity implies good stiffness and strength.  The degree of crystalliza-

tion can be controlled within certain limits by the number of branches.  Branching reduces the degree 

of crystallization.  Low-density polyethylene (LDPE) and high-density polyethylene (HDPE) differ in 

this regard.  HDPE has fewer branches and therefore has a larger volume fraction of crystallites.  

  

 

Crystallization can be induced and controlled by stretching.  Stretching leads to an alignment of 

the chains and facilitates crystallization.  The process is rather complicated.  Elastomers can crystallize 

locally and reversibly in the stretched state.  When the elastomer returns to the unstretched state, the 

crystallites melt.  

Sometimes polymers (such as polyethylene, PE, and polypropylene, PP) crystallize into lamellae 

(Fig. 11.2).  These lamellae have an edge.  Because more space is required at the edge than in the cen-

ter, the lamellae have a tendency to twist.  Sometimes the lamellae grow outwards from a center and 

then form spherulites.  

Remember 

− Semi-crystalline polymers often contain lamellae and spherulites. 

− Crystallization can be induced by stretching. 

  

 

Fig. 11.1 

When polymers crystallize, amorphous 

regions always remain. 

en.wikipedia.org/wiki/Crystalliza-

tion_of_polymers 

 

 

 

 
Fig. 11.2 

On the texture of semi-crystal-

line polymers.   

en.wikipedia.org/wiki/Crystalli-

zation_(polymer) 
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12 Fracture mechanics  

The fracture mechanics of polymers is peculiar and of much practical importance (Fig. 11.1).  Fig. 

11.2 illustrates, how crazing contributes to the deformation beforce fracture.  Fig. 12.3 shows the 

structure of high-impact polystyrene.  Soft inclusions of polybutadiene stop crack propagation. 

 

  

 

  
Fig. 12.1 

Polymers are deformed before they break 

behinpolymerco.com/en/tensile-test-in-polymers/  
Fig. 12.2 

G. Strobl: The Physics of Polymers 

 

 
Fig. 12.3 
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