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1 Preface  

PyQTM implements various sets of equations for the analysis of shifts of frequency and bandwidth (f(n) and 

(n) with n the overtone order), acquired with a quartz crystal microbalance with dissipation monitoring 

(QCM-D).  Mostly, PyQTM derives the thickness and the softness of the layer under study.  A QCM-D is any 

instrument, which acquires frequency and bandwidth on a number of different overtones.  The shift in half 

bandwidth, , carries information largely equivalent to the information contained in the shift of the dissipation 

factor, D. 

For an introduction to the science behind the QCM see the Ref. 1.  This manual is short on the algebraic details.  

Users can always look up details in the source code. 

As you will notice (or have noticed earlier), uniqueness of the fit results can be problematic.  The software 

cannot change that.  We have seen numerous cases, where we ended up not formulating conclusions.  (We have 

seen other cases, as well.) 

Numerous people have contributed to PyQTM.  Specific mentions go to Ilya Reviakine, Arne Langhoff, Philipp 

Sievers, Judith Petri, and Christian Leppin.   

Diethelm Johannsmann  
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2 The Core and Some Extensions of PyQTM 

Most of the time, PyQTM fits the data with the equation 

Eq. 1 

The variables are explained in section 6.  This one-liner is fully equivalent to the Voigt-Kelvin formalism.2,3  To the 

best of our knowledge, it was first written down (in slightly different form) by the Tel Aviv group in the appendix 

of Ref. 4. 

Most of you have fitted data with a fit function before.  Why is this manual ~20 pages long?  PyQTM goes 

beyond Eq. 1 in a few regards: 

• Z and k in Eq. 1 depend on the viscoelastic parameters.  Firstly, these depend on frequency and secondly, there 

are different choices for the viscoelastic parameters.  When trying to understand what a fit means, suitable 

choices for the parameters depend on the question to be addressed. 

• You (and PyQTM) need to keep an eye on the baseline and the reference state, to which this baseline 

corresponds. 

• We believe to owe you the mathematics, which covers multilayers, as well (hence the term “multilayer 

formalism”).  Also, we believe to owe you the mathematics covering viscoelastic profiles (section 4.6). 

• In some rare cases, the multilayer formalism reports a negative shear modulus, which is unphysical.  When that 

happens, the perturbation formalism must be used (section 5.3, also see the file 

Solve_Generalized_Lu_Lewis.py, the file Equations_for_Perturbation_Analysis.pdf, and Box 2 in Ref. 1).  

This problem mostly concerns polymer layers in the dry.  The Shull group has extensively worked on the 

analysis of such samples.5  

Einstein is quoted with6: “Everything should be made as simple as possible, but not simpler”.  The bullet points 

above address “but not simpler”.  

3 Background 

3.1 Viscoelastic layer systems  

There is an established formalism to calculate the periodic stress at the resonator surface caused by planar 

layer systems.2,7,8,9  PyQTM calls this algorithm the “multilayer formalism” (section 5.1).  The multilayer 

formalism calculates the periodic stress at the resonator surface and derives the complex frequency shift from the 

relation f̃/f0 = i/(Zq) Z̃L, where Z̃L (the ratio of stress to velocity) is the load impedance.  The latter relation is the 

small-load approximation.  See the glossary in section 6 for the meaning of the other variables.  The tilde denotes a 

complex number.  The complex frequency shift is given as f̃ = f + i.  QTM mostly displays overtone-

normalized complex frequency shifts, f̃/n = f/n + i/n = f/n + ifresD/2 

3.2 Half bandwidth or dissipation factor 

Internally, PyQTM quantifies dissipative processes by the half bandwidth, .   is related to the “dissipation 

factor” by the relation D = Q−1 = 2/fres.  The overtone-normalized complex frequency shift may be written as 

f ̃/n = f/n + i/n = f/n + ifresD/2.  PyQTM offers a choice between the use of /n or D. 
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3.3 Roughness 

PyQTM implements shallow, small-scale roughness following Ref. 10 and Eq. 25.  More technically, the 

shear-wave impedance of the liquid can be replaced by what is called Zliq,eff  in Eq. 25  The results obtained with 

these equations must be treated with some care because of the inherent assumptions. 

Because the model applies to shallow roughness, the parameter 

“Aspect Ratio” should not be larger than unity.  The aspect ratio is the 

ratio of the vertical scale of roughness to the lateral scale of roughness. 

The roughness is always assumed to be the roughness at the interface 

with the bulk liquid (Figure 1). 

This option is activated with a check button at the upper right of the 

parameters frame.   

3.4 Perturbation analysis 

Some short-comings inherent to the small-load approximation are avoided by the “perturbation analysis” (Box 

2 in Ref. 1).  However, the perturbation analysis only covers thin films.  It fails at the film resonance.  In cases, 

where the multilayer formalism predicts a film resonance, the perturbation analysis is not applicable.  Whether the 

perturbation analysis can be trusted can also be inferred from a comparison between the 3rd-order result and the 

5th-order result.  If the two agree, one is safe.  

The perturbation analysis is needed for stiff films in air.  For layer systems in liquids, the differences between 

the results obtained with the multilayer formalism and 

with the perturbation analysis are small.  For stiff films 

in air, the shear-wave impedance of the electrode 

material1 must be known in order to derive the film’s 

shear modulus. 

In order to capture the film resonance and still 

avoid the limitations inherent to the small-load 

approximation, one may numerically solve the 

generalized Lu-Lewis equation (Eq. 40 in Ref. 1).  

Python code doing this is provided in the file 

“Solve_Generalized_Lu_Lewis.py”. 

3.5 Strengths and limitations 

a) Robust results are obtained for thin films, if the 

curvature in plots of f/n and /n versus n can be 

determined with confidence (Figure 2).2   

b) PyQTM can model thick, soft films, but the derived 

fit results often are not unique. 

                                                      
1 Gold: ZAu  23.9·106 kg/(m2 s) 
2 If viscoelasticity is described as proposed in section 4.7, the model has five free parameters (thickness plus four parameters 

for viscoelasticity).  If the experimental data can be aggregated into only four robust parameters (two offsets, two slopes, see 

Figure 2A), the problem is underdetermined.  A model of viscoelasticity with three free parameters would be needed.  The 

Clausthal group has tried a number of such models (variants of the Maxwell model), but has concluded that these produce 

more confusion than insight. 

Such a model would amount to some other way of calculating J ̃ in the routine Calc_J_SI in QTM_Core.py     

 
Figure 1: With rough interfaces, 

the mean height is equal to the 

thickness of the last layer.   
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Figure 2: For very thin films (A), the fractional noise is too large 

to let a curvature in plots of Δf/n and ΔΓ/n versus n be 

determined reliably. Interpretation must rely on the offsets and 

the slopes for Δf/n and ΔΓ/n (totaling in four parameters). If the 

model contains five parameters, the problem is underdetermined. 

For thicker films (B), the curvatures can be determined reliably. 

Five model parameters can then be derived reliably, as well. 

Adapted from Ref. 11. 
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c) Flexural motion of the plate is not covered.  PyQTM is based on the parallel-plate model. 

d) Piezoelectric stiffening is not covered.     

e) Structured samples are not covered, basically.  Small-scale, shallow, random roughness is an exception. 

f) PyQTM allows for two discrete layers, at most.  Viscoelastic profiles are not covered.  

In principle, viscoelastic profiles (for instance produced by a polymer brush) might be covered by the multilayer 

formalism, extended to many layers with small thickness, each.  However, there is a rather easy way to predict 

f and  for such situations, solving the underlying differential equation.  Sample code is contained in 

“VE_Profile_Solve_ODE.py”.  This Python program solves the wave equation for continuous profiles {G(z), 

G(z), (z)} and derives the shifts of frequency and bandwidth from the solution (section 4.6.3 in Ref. 1).  The 

profiles leading to agreement with experiment may or may not be unique (see b)).   

4 Tour Through PyQTM 

Figure 3 shows the user interface.  It was meant to be self-explaining.   

4.1 Versions 

PyQTM can be run from Python.3  The Clausthal group uses Spyder.  The IDLE environment appears to work 

as well.  You see the code and can make changes.4  PyQTM.py is the main file.  PyQTM.py imports code from the 

other files.   

An older version (written in Delphi) is called QTM. 

                                                      
3 The numba package is required.  Alternatively, all lines containing  @jit(nopython = True) can be commented away, but that 

will let PyQTM run much slower. 

  The lmfit package is required.  Installation of lmfit can be difficult for older versions of Python.  At Clausthal, we needed to 

install the newest version of Anaconda (and then everything went smoothly).  
4 In particular, users have adapted the output formats to their needs. This may be achieved by modifying the routine 

FitPars_to_Clpbd() in PyQTM.py 

 
Figure 3: The user interface  
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4.2 Input and output 

On start-up, PyQTM reads certain general status information from the file PyQTM.ini.  While you work, all 

information is saved into temporary files in a subfolder to the working directory named “/tmp”.  The file 

“Master.qtm” is organized like a config-file and contains the most relevant information.  Various other files (with 

extension .qt2) contain supplementary information.  These are ASCII files.  They contain NaNs (NaN: “not a 

number”).  “Save as …” asks the user go select a folder and suggest a prefix to the existing filenames, which was 

meant to be descriptive (can be changed).  It then copies all files from the tmp-folder into this folder (with the 

names changed).  When the user opens a file, PyQTM reads in the information contained these files.  The master 

file to be opened must contain the string “_Master.qtm” in the filename.   

The submenu item under File named “Export Fit Params and + Simulation Data” exports results in a format, 

which is more suitable for input to Excel than the files with extension .qt2.  PyQTM never imports those data. 

There is a choice between “Start: Default” or “Start: Previous”.  In case “Start: Default” is selected, PyQTM 

starts from the file “Default.qtm”.  Users can edit these settings.  For instance, they might set the default value of 

“tt_io_format” to their preferred instrument.   

Experimental data are imported from “Import” frame.  The files must be text files.  Examples for the formats 

as implemented by the different instruments (QSoft, QSoft_new, AWSensors, openQCM, QCM-I) are contained in 

the folder distributed with the code.  These examples were kindly provided by Annemarie Maan, Ralf Richter, and 

Ilya Reviakine, Martin Dienwiebel, and Osheen Joseph.  Once in a while, the companies change their output 

formats (a repeating source of delight).  You then may either figure it out yourself (and adapt the source code in 

QTM_TT_IO.py) or send us a mail.  

If the option “Import: Comp Drift” is checked, PyQTM applies a small correction to the data, which is meant 

to account for the fact that the overtones are interrogated sequentially.  If the sample’s properties change quickly, 

an apparent dependence on overtone order may in fact be caused by a dependence on time.  PyQTM calculates the 

time derivative of the data on each overtone and uses with information to correct the data from the different 

overtones for this artifact.  The correction is negligible in most cases. 

The statistical noise can always be lowered with preaveraging during import 

(Figure 4).  Preaveraging also lowers the number of data points, which speeds up 

the fits on the entire time series.  Statistical noise does not usually dominate the 

standard error of the fit parameters.  The different overtones often slightly 

deviate from the expectations, even for Sauerbrey films or Newtonian liquids.  

Presumably, these irregularities go back to poorly controlled effects of 

compressional waves, the latter being caused by small admixtures of flexural 

motion to the thickness-shear deformation.  These vary between crystals, but not 

over time during one experiment.  Usually, these deviations amount to more than the statistical noise. 

Data for one single point can be edited in the frame “Point”.  They can also be imported from the Clipboard 

with the button “Point From Clpbd”.  The folder, which contains the Python files, should also contain an Excel file 

named Example_Input_from_Clipboard.xlsx, which shows the required format. 

Consider updating fcen (see Eq. 5) after import.  (It may be preferable to always fit with the same fcen for better 

comparison between experiments.) 

4.3 Reference state, bounds for fitting 

− Shifts of frequency and bandwidth are always understood as shifts with respect to some reference state.  The 

reference state is edited in the Reference Form.  The reference state corresponds to the Zero on the scales of f/n 

and /n (that is: corresponds to the baseline).  Change this offset by clicking “→ Set Baseline”.  (I can make 
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Figure 4: Preaveraging occurs with a 

Gaussian weight function.  Vertical 

dashed lines denote the intervals 
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sense to average data over a certain range before setting the baseline.)  PyQTM then uses the current values of 

f/n and /n as the new baseline. 

Do not confuse the baseline with the reference state.  The baseline is a set of values for f/n and /n.  The 

reference state is a set of system parameters.  The two need to correspond to each other.  The reference state can 

be edited in the window “Reference State”.  It can also be changed with the button “Make Reference State”. 

− The resonance frequencies of a crystal usually change by a few Hz, when the user dismounts them from the 

holder and mounts them again.  (In-between the user might apply a film be spin-casting).  These changes occur 

because of static stress.  They can be lowered to some extent by mounting crystals with as little stress a possible. 

− There are parameters unrelated to the sample.  These are the frequency of the fundamental, f0, the shear-wave 

impedance of AT-cut quartz, Zq, and the parameter fcen from Eq. 5.  The parameter fcen ideally is in the center of 

the frequency range analyzed.  If data from the overtones at 15, 25, 35, and 45 MHz are analyzed, fcen should be 

30 MHz.  One might always adapt fcen to the active harmonics or keep it fixed (for better comparison between 

experiments). 

− The fits are constrained by bounds, which can be edited in the Limits Form.  When the viscoelastic parameters 

are changed (for instance from J to G), PyQTM automatically resets the limits to the default values.  In case you 

have manually changed the limits, your changes will get lost when the viscoelastic parameters are changed. 

The default limits are such that G, J, and  can never be zero.  For instance, the minimum density is 10−9 g/cm3.  

With these bounds applied to the fits, the shear-wave impedance, Z, and the wave number, k, always remain 

finite (which avoids divisions by zero).  It is advised to not allow zeros for the density and the viscoelastic 

parameters.  When the fit routine attempts to set the density to zero, the program exits with an error message. 

4.4 Fitting  

The fit is based on a 2-minimization.  2 is defined as  

Eq. 2 

novt is the number of overtones included in the analysis. nfitpar is the number of fit parameters.  The factor of 2 before 

novt occurs because every overtone contributes two data points (Δf/n and Δ/n).  

The standard errors reported by PyQTM are those returned by the fit routine of the package “lmfit”.  

(Remember the possibility of correlated errors.) 

(f/n)err is the uncertainty in the measurements of f/n and /n.  The uncertainty is about the same on f/n 

and /n, hence only one parameter.  PyQTM’s default value is (f/n)err = 0.1 Hz.  (f/n)err only affects the value of 

2, not the set of fit parameters, which minimizes 2.  If (f/n)err was estimated correctly and if 2 is of order unity, 

the fit is as good as it can be.   

PyQTM also allows to assign certain statistical weights, wn, to the different overtones.  The default is “flat”.  

One may also assign different weights to f/n and /n (“Rel Weight , f”).  This makes sense when  is 

much smaller than f.  If the weight of  is increased, the fit will give these small values more statistical weight 

than they would usually have. 

When fitting entire time series, there is a choice to either start all fits from the same guess (the values in the 

parameters panel (“Guess  ParsPanel”) or from the previous fit result (“Guess  Prev Result”).  The latter option 

makes the fits run faster, but carries the danger that one bad fit will let all subsequent fits fail because the guess 

values from thereon are poor.  The fits can run from start to stop (“→”) or from stop to start (“”). 
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A few more comments: 

− A parameter is turned into an active fit parameter with the check box next to it.   

− Entries into an edit field become active, after the user hits RETURN (only then, do not forget). 

− The panel to the right-hand side in Figure 3 shows the fitted parameters with error bars.  Only a few error bars 

are shown in order to avoid overcrowding of the figure.  Increase or decrease the number of bars with the 

parameter in the field next to “ErrB Inval”.  This parameter also controls how often the user interface is updated 

while PyQTM runs fits on all data in a time trace.  

− The density  cannot be a fit parameter.  

The QCM cannot independently determine the thickness and the density of a layer.  Only the product of the two 

(the mass per unit area) enters the equations.  PyQTM nevertheless reports the thickness, because the density 

often is known with good accuracy and because many users are more familiar with the unit “nm” than with the 

unit “µg/cm2”.  (With  = 1 g/cm3, a mass per unit area of 1 g/cm2 corresponds to a thickness of 10 nm.)  

Again, the derived thickness depends on the chosen density.    

− The density of the bulk cannot be a fit parameter because the QCM only determines the viscosity-density 

product of the bulk. 

− It is recommended to discard data from the fundamental.  For poorly understood reasons, the frequency shifts 

measured on the fundamental often do not match the expectations.  The data from the higher harmonics in these 

cases do form a consistent picture.  Depending on the experimental conditions, data from the 3rd overtone can be 

problematic as well. 

4.5 Confidence Limits  

Confidence limits are a bit of a thorny issue.  It is difficult to 

conceive a model with less than five free parameters.  Extracting 

five parameters independently from a set of about ten data points 

(f/n and /n on five overtones) is bound to cause correlated 

errors (Figure 5).     

The solutions provided by PyQTM are often not unique.  

The thickness, in particular, can be uncertain.  There is a similar 

problem in optics, where the thickness of a layer sometimes 

cannot be inferred from reflectometry without independent 

knowledge of the refractive index.   

PyQTM offers three tools to study confidence limits: 

4.5.1 Bootstrapping 

Bootstrapping provides for a quick estimate of the 

confidence range, not based on the covariance matrix.  (The standard errors from the fit routine are based on the 

covariance matrix.)  The bootstrapping algorithm resamples the experimental values, allowing for multiple draws 

of the same value.  It then performs a fit on those sets and obtains a result slightly different from the result obtained 

from the original data set.  The distribution of these results and the standard deviations of those distributions 

indicate the confidence range.   

4.5.2 Added random noise 

Another quick estimate of the robustness of a fit is obtained by adding random noise to the data.  PyQTM adds 

Gaussian noise with a width of the distribution as given in the field (f/n)err.  Otherwise, the window is the same as 

the Bootstrapping window. 

 
Figure 5: A plot of the quality of the fit versus two 

parameters as produced by lmfit.  The valley is 

elongated because the curvatures in the QCM data 

(Figure 2) are determined with less accuracy than the 

offsets and the slopes.  Such elongated valleys in the 

2 landscape are seen often.  

 

 

 



 8 

4.5.3 2 Landscape 

Inspecting the 2 landscape can be instructive.  There are two modes: 

− “Run One” varies the parameter chosen in the box next to the button in the range indicated in the entries “Min” 

and “Max”.  PyQTM fits the remaining free parameters and plots these fitted parameters as well as 2 versus the 

varied parameter.  One hopes to see a well-defined minimum in 2
.   The other graphs show the cross 

correlations.  For instance, the stiffness may be anticorrelated with the thickness. 

− “Run All” essentially does the same as “Run One”, but does so for all free parameters and only plots 2.  One 

hopes to see well-defined minima in all plots.  The range is specified in the field called “Width Factor”.  The 

minimum and the maximum are the values from the best fit, divided by the Width Factor and multiplied by the 

Width Factor.  An exception are the power law exponents.  These run between their limits as set in the Limits 

Form. 

4.5.4 Confidence limits calculated by lmfit 

PyQTM also calls routines from the library lmfit.  It does so in two ways: 

− The button “ConfLimits → Console” lets PyQTM throw all kinds of tables and diagrams to the Python Console.  

Please refer to the source code after “def ConfLims_lmfit_2_Console():” in QTM_Core.py.  Documentation is 

contained in https://lmfit.github.io/lmfit-py/confidence.html. 

− lmfit is rather powerful.  It should be not so difficult to call other lmfit-routines from inside the routine 

ConfLims_lmfit_2_Console() (adapting the source code).  The keyword arguments of the existing function calls 

might be changed, as well.   

4.6 Fuzzy Interface to the Bulk 

PyQTM assumes sharp interfaces.  That was 

a choice made at the beginning.  However, 

many samples of interest would be better 

characterized by profiles of the density and 

viscoelasticity, such as G̃(z) and (z).  One such 

profile ( and  versus z) is sketched in on 

the upper right in Figure 6.  

Predicting values of fn and n produced 

by profiles is not particularly difficult (section 

4.6.3 in Ref. 1).  The problem is the number of 

free parameters of such models.  There would 

have to be at least one more parameter, which is 

the width of the interface.   

What can still be done (and what is 

implemented in PyQTM), is to start from a 

sharp interface, gradually increase the width of 

the interface, and check whether increased 

interface width grossly changes fn and n.  PyQTM assumes hyperbolic tangents with some width for the 

profiles.  This is what the window named “Fuzzy Interface” does.  Again: This is only meant to be a check on how 

wide a smooth interface may be without invalidating the results obtained with a sharp interface.   

 
Figure 6: An output from the window “Fuzzy Interface”.  The panel on 

the upper right shows the viscoelastic profile, where the width of the 

interface corresponds to the blue vertical line in the panel to the left.  

The lower right shows the displacement pattern (dashed for the 

imaginary part both at the top and the bottom. 

The graph to the left shows to what degree f/n and /n are changed 

when the interface is made wider.  The perfectly sharp interface 

corresponds to an interface width of zero.  The results calculated 

assuming a sharp interface are shown as dashed horizontal lines on the 

left.  In the case shown here, a fractional interface width of 10% yields 

values similar to what is obtained with a sharp interface. 

https://lmfit.github.io/lmfit-py/confidence.html
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To the details: If profiles of the complex shear modulus, G̃(z) = G(z) + iG(z), and of the density, (z), are 

given, one may calculate the displacement û(z) by solving the differential equation: 

Eq. 3 

This is done with routine “solve_ivp”.  The complex frequency shift follows from û(z = 0) and dû/dz(z = 0) as 

Eq. 4 

4.7 Choice of parameters quantifying viscoelasticity 

In rheology, a material’s stiffness is usually described in terms of the shear modulus, G̃, where the tilde 

denotes a complex number.  Sometimes, the viscosity, ̃ = G̃/(i), is used.  For the QCM, it is often convenient to 

use the compliance, J̃ = 1/G̃.  The reasons are discussed below Eq. 7.  For ease of interpretation, PyQTM offers 

different sets of parameters, which are 

 - J and J 

- G and G 

-  and  

- G and  

- |J ̃| and tan() 

- |G̃| and tan() 

- |̃| and 1/(tan()) 

Importantly, the viscoelastic parameters depend on frequency.  This may create the impression that the 

problem was underdetermined because there are separates values of J and J (or of G and G or of …) for every 
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Figure 7 

The shear modulus of viscoelastic materials depends on 

frequency. The plot shows a typical rheological spectrum 

of a long-chain linear polymer in solution. The frequency 

scale extends over many decades, while the QCM only 

covers about one decade. In this limited frequency range, 

G(ω) and G(ω) can be approximated by power laws 

(dashed blue lines).  

For the QCM, the pair {J(ω),J(ω)} is more practical than 

the pair {G(ω), G(ω)}. 
 

The maximum in Gʹʹ at low frequencies is typically 

interpreted in terms of disentanglement.  The figure is not 

meant to imply that disentanglement would happen for 

typical soft adsorbates.  It is meant to illustrate viscoelastic 

dispersion. 
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single overtone.  However, the frequency dependence of J and J usually is smooth (Figure 7).  PyQTM assumes 

power laws of the form 5 

Eq. 5 

or (for instance) 

Eq. 6 

fcen is a frequency in the center of the accessible range.  The parameter tan() is defined as 

tan() = GG = JJ = /.  The loss tangent is independent of whether viscoelasticity is quantified with G, J, or 

.  If the loss tangent has a peak at some frequency, the medium under study undergoes relaxations with rates in the 

range of the peak in tan() (Figure 8, Figure 9).  

 
 

                                                      
5 Power laws here are to be understood as approximations.  It is not assumed that the sample was a „power-law fluid“ in the 

narrow sense.  Some models of polymer viscoelasticity predict power-law behavior in certain frequency ranges.  When they 

do, the power law exponents often are the same for G() and G().  The spectrum shown in Figure 7 predicts power law 

behavior in the high-frequency range.  It was calculated from the BZW model (Baumgaertel et al., Rheologica Acta 29, 1990, 

400). 
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Figure 8: The loss tangent (blue) has a peak at a 

frequency corresponding to the rate of relaxation, 

which governs the dynamics. 

https://commons.wikimedia.org/wiki/File:Master_c

urves_on_polymer.png#/media/File:Master_curves

_of_a_polymer.png, (slightly modified) 

 
Figure 9: The sign of the power-law exponent 

pertaining to tan() indicates, whether the 

main relaxation is faster or slower than the 

frequency of the QCM. 
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If the viscoelastic parameters are {J, J}, {G, G}, {, }, or {G, }, the Kramers-Kronig relations 

impose limits on the power-law exponents.  For instance, one has −2 <  < 0 and −1 <  < 1 for the case of 

{J, J}.  These values are implemented as default limits.  For the other choices, the limits are less stringent.   

There is a slight problem with power laws: A power law behavior in J'(f) and J''(f) does not translate to a 

power law after converting to G'(f) and G''(f) with the relations G = J/(J2+ J2) and G = J/(J2+ J2).  When the 

representation is changed from J ̃ to G̃, the simulated curves slightly change.   

A representation with tan() is interesting insofar, as the peak in tan() does not depend on whether tan() is 

defined as J/J, as G/G, or as /.  The position of the peak in tan() is often identified with the rate of the 

main relaxation (Figure 8).  Applied to the QCM, this argument implies that a positive power law exponent of 

tan() implies a “fast” relaxation, while a negative power law exponent implies a “slow” relaxation (Figure 9). 

Occasionally, fitting with sets of parameters involving tan() is less efficient than fitting with the real and 

imaginary part.  In these cases, it is advised to first fit with the real and imaginary part (for example with G and 

G) and to then redo the fit with {|G|, tan()}, starting with the values obtained after the first fit.   

PyQTM uses the unit MPa and MPa−1 for the shear modulus and the shear compliance.  This unit is convenient 

because a viscosity of 1 mPa s (about the viscosity of water) corresponds to a shear modulus of 0.1 MPa if 

converted to G with the relation G = i and  = 2 15 MHz  108 s−1.  Materials with a shear stiffness 

> 100 MPa appear as rigid to the QCM.  Interesting non-gravimetric behavior is seen when the shear stiffness is a 

few MPa (that is, if the viscosity is a few times the viscosity of water).     

4.8 Thin films with moderate softness 

This section is background information.  The equations are not actually implemented in PyQTM. 

For thin films, J and J are the most suitable parameters for the analysis of QCM experiments because there 

are simple and intuitive relations between J and J, on the one hand, and the data sets {f/n, /n}, on the other.  

There are two sets of such relations, one for the film in air and one for the film in a liquid.   

For the film in a liquid, the relation is 

Eq. 7 

It is instructive to analyze the ratio /(−f).  For the thin film in a liquid, the ratio is linked to Jf as  

Eq. 8 
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The second step assumes Jʹʹf to be small and bulk  f.  The term in curly brackets can also be written as Jʹʹf/Jʹʹbulk.  

If Jʹʹf/Jʹʹbulk is much smaller than unity, Eq. 8 applies (only then).  

Following Eq. 8, an approximate value of ʹ can be obtained by plotting log(/(−f)/n) versus log(n) and 

reading the slope of this line (Figure 10b).  However, the approximations leading to Eq. 8 will also affect the slope.  

PyQTM does not make these approximations when inferring ʹ from f/n and /n.  PyQTM fits the full equation 

for arbitrary thickness to the data. 

For the thin film in air, one has 

Eq. 9 

and  

Eq. 10 

Both in air and in liquid, J and J appear in the numerator of the viscoelastic correction.  The trivial case 

(Sauerbrey behavior) corresponds to J = J = 0.  The term “−1” in Eq. 9 is non-trivial.  It is part of the results from 

perturbation analysis (see section 1.1.2 in the document Equations_for_Perturbation_Analysis.pdf). 

Assume a single film in a bulk liquid.  This problem has a total of 5 unknowns, which are d, J'(fcen), J''(fcen), ', 

and ''.  If viscoelasticity is represented with {Jʹ, Jʹʹ}, 4 of these 5 parameters can be inferred with good accuracy 

from plots as shown in Figure 10.  The correspondences are: 

−  the thickness is proportional to the intercept with the y-axis in a plot of f/n versus n 

(note the problem discussed in section 4.9, though). 

−  J'' is proportional to the slope in a plot of f/n versus n. 

− J' is roughly proportional to the ratio /(−f), see Eq. 8.  An approximation is involved. 

− ' is about equal to the slope in a log-log plot as shown in Figure 10b. 

The parameter '' is linked to the curvature in the plot of f/n versus n.  Unfortunately, this curvature cannot 

usually be derived with confidence.  For that reason, '' often remains uncertain.  This argument applies if J' and J'' 

are chosen as the viscoelastic parameters.  Otherwise, the uncertainty spreads to both exponents. 
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Similar arguments apply to the thin film in air, where the roles of J and J are interchanged (Figure 11).  

 

4.9 Thick, soft adsorbates 

The arguments from section 4.8 only apply, if the denominator in Eq. 8 is about unity.  This condition can be 

rewritten as 

Eq. 11 

Dilute adsorbates (such as polymer brushes, which are highly swollen in the solvent) do not always fulfill this 

criterion.  The sample might be a layer with slightly increased viscosity compared to the bulk.  It is difficult to infer 

statements on the geometric parameters of such layers from QCM data.  Plotting 2 versus the assumed thickness 

(section 4.5.3), one finds a broad minimum.  Further complications are :  

− The equations implicitly assume that the power law can be extrapolated to n = 0 (Figure 13). 

− These layers may not be acoustically thin.  

− There may be a viscoelastic profile, {Gʹ(z), Gʹʹ(z), (z)}.   

The best one can do is to check, whether the sample is thin and moderately soft in the sense of Eq. 11.  A 

second check can be a fit with zero film thickness and altered viscosity of the bulk.  If such a fit leads to reasonable 

values, the sample probably is thick and soft.   

4.10 Uniqueness of fit results if a thin sample looks Sauerbrey-like 

When −f/n is the same on all overtones and when −f >> , one typically interprets this finding as being 

caused by a rigid film.  There is, however, another possibility.  If the layer is viscous (tan() >> 1, Jʹʹ > Jʹ), and if, 

further, Jʹʹ scales as 1/n, one again finds −f/n  const and −f >> .  These conditions are realized in Newtonian 

liquids.  A near-surface layer with slightly increased viscosity (common in electrochemistry) looks like a rigid film 

to the QCM.  For more details, see Ref. 11.   
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Figure 10: Thin film in a liquid 

 

Figure 11: Thin film in air  
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PyQTM cannot solve this problem.  Depending on the starting values for the fit, it will either predict the layer 

to be rather rigid or to look like a Newtonian liquid with a viscosity slightly higher than the viscosity of the bulk.  

The 2 landscape plotted as a function of tan() is rather flat in these cases. 

4.11 Fitting in the J, J representation, leaving  fixed 

Because the power laws applied to the different representations of viscoelasticity are not fully equivalent, the 

fit results obtained with the different representations are not strictly the same.  For the sake of reproducibility and 

comparison between samples, one might decide to always fit with the same representation.  Of course 

reproducibility in this context must not be mistaken for accuracy.  If different representations yield different results 

(that is, if the different sets of fitted parameters do not agree after conversion between the representations), this 

points to uncertainties of a fundamental kind.  In such cases, the chosen representation amounts to a bias.   

The {J,J} representation is the preferred representation for fitting.  First, the relations between the fitted 

parameters and the plots f/n, /n, and /(−f) versus n are most transparent (see Figure 10 and Eq. 7).  The 

user can intuitively understand the outcome of the fit.  Second, if five free parameters turn out to be too many for 

practical fitting and if the user still wishes to proceed with some kind of quantitative analysis, keeping  fixed in 

the J,J representation is the least problematic option.   then is the one most uncertain parameter and errors in 

 are largely uncorrelated with errors in J, J, and .   quantifies the curvature in the plot of f/n versus n 

(Figure 10B).   It does not affect the slope in this plot, which governs J.  It neither affects the plot of /n versus 

n, nor the plot of /(−f) versus.  J is about equal to /(−f)(bulk)−1 at f = fcen.   is obtained from the slope in 

Figure 10B.  Fixing  will, however, affect the derived thickness.  If  is close to −1, the curvature is negative 

and the apparent thickness becomes large (red line at the top in Figure 12).  If  close to −1 and if  fluctuates, 

the derived thickness will also fluctuate (strongly).  Fixing  avoids those fluctuations.  A smooth dependence of 

thickness on time will be obtained.  Again: Different smooth curves will be obtained, depending on the values 

chosen for .  These arguments apply in the thin-film limit, only.  The conversion is only applied to the display of 

the fit parameters for the time series on the right-hand side, not to the parameters in the parameters frame. 

For the sake of simplicity, one might assume  = 0, but this assumption is just arbitrary as, say,   = +0.5 or 

 = −0.5.  (Following from the Kramers-Kronig relations,  in the J, J representation is between −1 and +1, 

see Figure 7B).  Negative values of  imply that the rates of the main relaxation are less than 5106 s−1  (that is: 

 
Figure 12  

In the presence of viscoelastic dispersion, the fitted data 

sometimes agree well with experimental values, but when 

extrapolating the fitted curve to n = 0, a large negative value 

of f/n is obtained.  This can lead to an unreasonably large 

thickness.   

 
Figure 13  

There may be a danger if power laws are extrapolated to 

zero frequency.  In the case shown here, Jʹʹ is not as large 

at low frequencies, as the dotted blue line suggests.  The 

dotted blue line lets f/n diverge to large negative values 

in Figure 12. 
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less than 5 MHz). Positive values imply fast relaxations in the same sense.  Again, the value of  is not easily 

determined from experiment if the sample is thin. 

If  is strongly negative and if the user fixes , the user should simply not report the derived values of the 

thickness.  This is the case, where gravimetry fails, also discussed in section 4.10.  If gravimetry fails, that does not 

imply that the viscoelastic analysis was entirely worthless.  Only the absolute values of the thickness will be 

uncertain.  (Trends in the evolution of the thickness versus time will usually be robust).  

J and J are not usually the preferred parameters for the discussion with non-specialists.  Researchers from 

polymer rheology typically are familiar with |G| and tan().  A second case are liquid-like layer, in which case  

and  allow for a direct comparison with the bulk liquid (and hence are more suitable parameters than |G| and 

tan()).  Importantly, the conversion to the preferred representation may occur after the fit.  Conversion of the laws 

requires a 2-minimization because the power laws are not strictly equivalent in all cases.6  This conversion is 

routinely done by PyQTM when the user switches representation.  PyQTM always updates the plots of the 

simulated values of f/n and /n (with hardly any noticeable differences).  Conversion between representations 

after the fit is not at all a problem. 

4.12 Remarks to details 

− The user may change the limits for fitting, in principle.  However, PyQTM sets the limits back to the defaults, 

whenever the user switches the representation of viscoelasticity.  Make sure that your choice was still valid 

when you actually ran the fit. 

− The QCM can be used to determine the complex viscosity of bulk liquids at high frequencies.  The technique 

also carries the name “high frequency rheology”.  For reasons, which are poorly understood, ʹʹ on the higher 

overtones is sometimes reported as being negative by the QCM.  One reason may be uncontrolled adsorption.  

ʹʹ is proportional to 2 – f 2.  Adsorption makes f more negative and thereby drives 2 – f2 into the 

negative range.  Another reason may be coupling to the anharmonic side bands, which is more likely on the high 

overtones and is more likely with broad resonances (produced by a liquid with high viscosity, Fig. 41 in Ref. 1). 

− PyQTM reports an rms-noise on the lower left of user interface (“(f/n)_rms [mHz]”).  This value is computed 

as the square root of the Hadamar variance, fHad
2 = 1/6 (fi+1 – 2fi + fi−1)2.  In the absence of drift, the square 

root of the Hadamard variance is the same as the root-mean-square noise.  The rms-noise is averaged over all 

active overtones. 

The rms-noise is computed from the time series inside the fitting range.  If no fitting range is selected, the rms-

noise is not displayed.   

The calculation of the rms-noise does not take the time base into account.  Preaveraging improves the rms-noise.  

− Some settings can only be changed from the file Master.qtm, meaning that the user interface does not contain 

the respective dialogs.  Most of these a linked to what might be called a “development version”.   

− There is an option to display data either versus time (“x: time” close to the Import button) or versus row number 

(“x: i” close to the Import button).  If the second option is chosen, files can be merged and PyQTM ignores gaps 

in time between measurements.  It just plots the data sets one after the other. 

− PyQTM crashes rarely.  When it crashes, you see an error message on the console.  Please send a mail with the 

error message.  (You also see warnings on the console.  Those can be ignored.) 

PyQTM does not usually crash, when a fit fails.  Still…. it sometimes does.  Avoid fitting around on the 

baseline (will all f/n’s  0 and all /n’s  0). 

                                                      
6 PyQTM first converts values at every single overtone, n, and then fits a power law to these converted values.   
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5 Underlying Equations  

5.1 Multilayer formalism 

The multilayer formalism is the canonical model of the QCM in contact with viscoelastic layers.7,2,8,9,10  The 

community agrees on these equations.  (Others use other variables, but the equations are the same.)   

The multilayer result for a system of two layers in a liquid still fits into one line:  

Eq. 12 

Eq. 12 can be a fit function in Excel.  The Excel solver should produce the same fits as PyQTM.  If the interface to 

the bulk liquid displays small-scale roughness, PyQTM replaces Z̃liq in Eq. 12 by Z̃liq,eff from Eq. 25. 

PyQTM does not directly apply this equation.  It rather uses an algorithm (in the subroutine 

MultilayerFormalism() in QTM_Core), which can be extended to an arbitrary number of layers.  There is a set of 

two complex velocity amplitudes, û+ and û−, pertaining to two waves propagating in the direction of +z and −z.  The 

waves are of the form û+exp(it – ikz) and û−exp(it + ikz).  In the bulk, there is no wave traveling inwards 

(û−
bulk = 0).  The amplitude of the other wave may be set to 1, meaning that all other amplitudes may be normalized 

to û+
bulk.  Continuity of stress at an interface between layers 1 and 2 can be expressed as 

Eq. 13 

The relations k̃ = /c̃,  c̃ = (G̃/)1/2,  G̃ = i̃,  and Z̃ = (G̃)1/2 were used.  Z̃ is the material’s shear wave impedance.   

The continuity of velocity is expressed as 

Eq. 14 
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Geometry and variables 

underlying Eq. 13 − Eq. 

19. 
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Combination of Eq. 13 and Eq. 14 leads to 

Eq. 15 

In the last step, the two amplitudes were combined into a vector.  The propagator matrix links the amplitudes on 

one side of the interface to the amplitudes on the other side.   

The amplitudes at the bottom of a layer with thickness d are related to the amplitudes at the top by  

Eq. 16 

With two layers, the amplitudes at the bottom of layer 1 (at the resonator surface) are  

Eq. 17 

The stress-velocity ratio at the resonator surface (the load impedance, Z̃L) is  

Eq. 18 

A minus sign enters at the front, because the stress is exerted by the sample onto the resonator plate in the 

downward direction.  The complex frequency shift follows as 

Eq. 19 

For a single layer in air, Eq. 12 simplifies to  

 

Eq. 20 ( )
0

1
tanf f f

q

f
Z k d

f Z

 −
=



( ) ( )2

1 1 2 2

1

1 1 2 2

2 2

1 2 2

1 1

2 2

1 2 2

1 1

2 2

1 11

1 2 2

1 1

ˆ ˆ ˆ ˆI :

ˆ ˆ ˆ ˆII :

ˆ ˆ ˆI+II : 2 1 1

ˆ ˆ ˆI II : 2 1 1

1 1
ˆ 1

ˆ 2
1 1

Z
u u u u

Z

u u u u

Z Z
u u u

Z Z

Z Z
u u u

Z Z

Z Z

Z Zu

u Z Z

Z Z

− + − +

− + − +

− − +

+ − +

+

−

− = −

+ = +

   
= + + − +   

   

   
− − = − + − −   

   


+ −

 
= 

 
− +



2 2

interf

2 2

ˆ ˆ

ˆ ˆ

u u
P

u u

+ +

− −




     =    
   

 
 

( )

( ) layer

ˆ ˆexp i 0ˆ

ˆ ˆ0 exp iˆ

top topbottom

top topbottom

kd u uu
P

kd u uu

+ ++

− −−

     
= =          −       

1,

layer,1 interface,1,2 layer,2 interface,2,3

1,

ˆ 1

ˆ 0

bottom

bottom

u
P P P P

u

+

−

   
=    

  

( )1 1, 1,

1, 1,

ˆ ˆ

ˆ ˆ

bottom bottom

L

bottom bottom

Z u u
Z

u u

− +

− +

−
= −

+

( )

0 0

i / 2i ires

L

q

f f Df
Z

f f Z

 +  + 
= =





 18 

Taylor expansion of Eq. 20 to 1st order in film thickness, df, yields the Sauerbrey result. There is a complication 

with regard to the Taylor expansion to 3rd order in df.  This expansion reveals finite-compliance effects in the thin-

film limit.  Taylor expansion of Eq. 20 to 3rd order in film thickness yields  

 

Eq. 21 

The constant C was introduced in step 2.  One may remember that for 5 MHz crystals and a density of the film of 

f = 1 g/cm3, a film thickness of 1 nm corresponds to a frequency shift of 5.7 Hz (meaning Cf = 5.7 Hz/nm).  The 

second term in brackets in Eq. 21 is the viscoelastic correction. 

The perturbation analysis modifies this result to: 

 

Eq. 22 

Importantly, the term  J ̃fʹ/fZq
2 from Eq. 21 is replaced by J ̃fʹ/fZq

2 − 1.  If the film’s stiffness is comparable to the 

stiffness of the crystal (if Z̃f  Zq), the difference is substantial.  If f(n) is naively analyzed with Eq. 21, one may 

find negative values for G or J. 

For a single layer in a liquid, Eq. 12 simplifies to 

Eq. 23 

Taylor expansion to 1st order in the mass per unit area yields 

Eq. 24 

Even for very thin films, this equation is different from the Sauerbrey equation.  The term in brackets is sometimes 

associated with the “missing mass effect”.12  For films in liquids, finite compliance lowers the apparent mass, if 

determined with the Sauerbrey equation.   

5.2 Roughness 

Shallow roughness on small scales is modeled as:10 

Eq. 25 

In the presence of roughness, PyQTM assigns the effective shear-wave impedance from Eq. 25 to the bulk 

medium’s shear wave impedance.  In this way, roughness can be part of the multilayer formalism. 
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Eq. 25 is formulated for Newtonian bulk media.  For these, the wavenumber in the bulk is given as 

k ̃liq = (1 – i)/.  If the bulk is viscoelastic, all occurrences of 1/ in Eq. 25 are replaced by k̃liq/(1 – i).  Also, liq is 

replaced by its complex analog, ̃liq. 

5.3 Perturbation analysis 

The equations underlying the perturbation analysis are a bit long and have been moved to a separate document.  

The name of the file is “Equations_for_Perturbation_Analysis.pdf”. 

6 Glossary 

Variable Definition Comment  

C Mass-sensitivity constant Eq. 21 

d Thickness of a layer   

D Dissipation factor D = 1/Q = 2/fres 

f Frequency   

f̃ Complex resonance frequency  f̃ = fres + i 

fr  Resonance frequency (also: fres) also: “series resonance frequency” 

f0 Resonance frequency at the fundamental  

G̃ Shear modulus  

hr Vertical scale of roughness Eq. 25, “h” for “height” 

hr/lr Aspect ratio Eq. 25, “l” for “lateral” 

J ̃ Shear compliance  

k ̃ Wave number  

m Mass per unit area   

n Overtone order  

q As an index: quartz resonator  

ref As an index: reference state of a crystal in the absence  

 of a load 

Z̃ Shear-wave impedance  Z̃ = c ̃ = (G̃)1/2 

Z̃L Load impedance   

Zq Acoustic shear-wave impedance of AT-cut quartz Zq = 8.8106 kg m−2 s−1 

, Power law exponents Eq. 5  

 Imaginary part of a resonance frequency, 

  Half-band half width (“half bandwidth”, for short)  

 Penetration depth of a shear wave Newtonian liquids: 

       = (2liq/(liq))1/2 

L Loss angle tan L = G/G = J/J 

    often called  in rheology 

  As a prefix: A shift induced by the sample  

̃ Viscosity ̃ = G̃/(i) 
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