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0 Preface  

QTM implements various algorithms for the analysis of shifts of frequency and bandwidth (f(n) 

and (n) with n the overtone order) acquired with a quartz crystal microbalance (QCM).  QTM has 

grown in a research environment and keeps evolving.  In that process, oddities and bugs appear.  Please 

give feedback. 

Introductions to the background – written by myselfa – can be found in references 1, 2, and 3.  For 

reviews on the QCM in general see, for instanceRefs. 4, 5, 6, 7, and 8.   

I have recently removed some options, which made QTM look complicated and which I myself 

rarely used.  Realistically, there are some artifacts in the operation of the QCM (resulting from crystal 

defects, static stress, coupling to anharmonic sidebands, etc.), which at present cannot be accounted for 

in the modeling process.  Given these systematic uncertainties, a robust analysis usually is a simple 

analysis.  One can construct elaborate models and calculate f and  from the system parameters, but 

the machine does not run backwards: Experimental values of f and  will not allow to differentiate 

between two such complicated models.  Following these considerations, I removed the section on 

continuous viscoelastic profiles (which might be used to reproduce the behavior of polymer brushes).  I 

also removed the option to employ user-specified dispersion laws (user-specified relations for G() and 

G()).  QTM now only allows for power laws (Eq. 7).  Also, QTM now allows for a maximum of two 

layers (down from four in the previous version).  There is no module accounting for piezoelectric 

stiffening.  Again: This is not to say that the more advanced models were meaningless or wrong.  It only 

is meant to say that the comparison to experiment is difficult. 

Notation: The shifts of frequency and half bandwidth are called f and .  Dissipative processes 

are quantified by the half-bandwidth, here.   is related to the “dissipation factor” by the relation 

D = Q1 = 2/fr.  f and  can be collected in a complex frequency shift f̃ = f + i  (The tilde 

denotes a complex variable.)  f looks like “Df” in QTM,  looks like “DG”.  For further definitions 

of variables, see the glossary in section 6.  

“Experimental data” in QTM are shifts of resonance frequency and bandwidth.  Whether these have 

been obtained with impedance analysis or ring-down, makes no difference to QTM. 

Here is an empathetic remark from Numerical Recipes [Ref. 13, on-line versions exist] directed at 

those, who look before they leap (who first fiddle around with the parameters to get a feel for the 

situation, before they click the Fit-button): “Unfortunately, many practitioners … deem a fit acceptable 

if a graph of the data and model “looks good”.  This approach is known as chi-by-eye.  Luckily, these 

practitioners get what they deserve”.  Alright!  As for me, I keep looking before I leap. 

QTM is freeware.b  When results obtained with QTM are mentioned in publications, its use should 

be acknowledged. 

In developing QTM I have profited from interactions with numerous people.  I would like to 

specifically mention Ilya Reviakine, Ralf Richter, and Arne Langhoff. 

Clausthal, Dec 2017 

Diethelm Johannsmann  

                                                 
a References to the previous work are contained in these overviews.  Not being scientific literature in the narrow 

sense, this manual is short on quotes.   
b Being an executable file, QTM.exe often gets stuck in firewalls.  Send it via Cryptshare or similar software. 
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1 Overall Organization 

To get started, save all files associated to QTM into a folder of your choice.  There is no installer.  

Click QTM.exe to launch QTM.  On start-up, QTM reads-in a certain status (file names of previous 

projects, size and position of Main Form, etc.) from the file QTM.ini.  

QTM saves work in files with the extensions .qtm and .qtd.  While you work, QTM saves all steps 

into TmpQTM.qtm (and TmpQTM.qtd in case you analyze entire files).  This information is transferred 

to the file of your choice once you save.    *.qtm contains choices and options as well experimental data, 

fitted values, and fit parameters for one single data set.  *.qtd contains data, fitted values, and fitted 

parameters for many data sets.  *.qtm and *.qtd are ASCII files.  *.qtm has the structure of an 

initialization file.  *.qtm can be opened with an editor; one can guess the meanings of the variables to 

some extent. 

Experimental data can be edited into the table on the left-hand side in the Main Form.  They can 

also be imported from the clipboard with the button <- Clipboard.  One would typically collect the data 

– in the format shown in the QTM Main Form – in Excel, load this set into the clipboard with ControlA, 

and then  click <- Clipboard in QTM.  There is a similar table for importing entire files in the Form 

Analyze Entire Files.  Note: In the latter case, the data in the clipboard need to be organized in lines, 

whereas they need to be organized as two columns for import into the Main Form.  Data can be 

 
 

Figure 1:  The Main Form.  The current parameters of the model are shown at the top.  Experimental data are entered into the 

table on the left-hand side.    
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imported into the Form Analyze Entire Files from a text-file, as well.  Such text files might be produced 

by QTools.  The file named template_for_input.txt contains an example showing the proper format. 

Experimental data for input may be expressed as either sets of values {f, } or sets of {f/n, 

D}.c  The term “set” pertains to data for the different overtones at one single time.   

Note: “F” in QTools is the overtone-normalized frequency shift.  “F” is f/n.  There is a box to choose 

between {Df[Hz], DG[Hz]} and {Df/n[Hz], DD[10^-6]} in both forms. 

Results can be exported in different ways: 

 The button Fits -> Clipboard saves data and fitted data to the clipboard. 

 The button Fit-Pars -> Clipboard saves the fit parameters to the clipboard. 

 The buttons Graph -> Clipboard save the respective graph to the clipboard.   

Most of the time, the user tries to find model parameters, which make the model (predictions 

shown as a red line the Main Form) agree with experimental data.  It is strongly advised to not jump to a 

fit right away, but to rather play around with parameters by hand and see, what a meaningful set of 

parameters might be.  In order to do that, make a certain parameter “active” by checking the round 

button next to it.  Once a parameters is active, it can be increased or decreased with the buttons “×5”, 

“/5” etc. on the left-hand side of the Main Form.  Parameters can also be edited into the respective field.  

For further information on the Main Form, see section 3.1 

2 Background 

2.1 The small load approximation (SLA) 

The overarching concept in the modeling of QCM results is the small-load approximation.  The 

small load approximation (SLA) states that the complex frequency shift is proportional to the ratio of 

stress and velocity at the resonator surface, where both stress and velocity are complex amplitudes.  

Since the SLA is a linear relation, it can be averaged over the area of the resonator.  More quantitatively, 

the SLA is expressed as  

Eq. 1 

Z̃L is the “load impedance”, which is ratio of the area-averaged stress to the tangential velocity.  See the 

glossary in section 6 for the meaning of the other variables.  There are extensions of the SLA covering 

dielectric effects (Chapter 5 in [3]) and non-tangential stress (Chapter 6.1 in [3]).  These are not part of 

QTM. 

2.2 Short-comings of the SLA, perturbation analysis 

The SLA does not cover the effects originating from flexural contributions (Chapter 6.1.3 in [3]). 

The SLA produces noticeably incorrect results when applied to thin films in air or vacuum.  These 

are caused by the linearization inherent to the SLA.  These short-comings have nothing to do with 

flexural contributions.  They occur within the parallel plate model.  The solution to this problem is to 

demand Z̃mot = 0 with Z̃mot given in Eq. 4.5.9 in [3].  One can numerically search for values of f and  

leading to Z̃mot = 0.  A previous version of QTM implemented this algorithm.  One may also find 

approximate values for f and  by an iterative “perturbation approach” (Chapter 6.2 in [3] and 

                                                 
c An opinion on terminology: „Dissipation“ in science usually denotes a process by which non-thermal energy is 

converted to thermal energy.  Calling the inverse Q-factor “dissipation” is unorthodox.   
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section 5.5 below).  “Approximate” in this context implies that the results from the 3rd-order and the 5th-

order perturbation calculations are more accurate than the results obtained with the SLA in the thin film 

limit.  The perturbation calculation does not capture the film resonance (section 4.5).  In order to capture 

the film resonance and – at the same time – avoid the errors resulting from linearization, one has to 

numerically solve Z̃mot = 0 for f and .  One needs to keep in mind, though, that Z̃mot is calculated 

within the parallel plate model.  Solving Z̃mot = 0 for f and  is by no means the ultimate answer to 

the modeling challenge.  

The differences between results obtained with the perturbation approach and results obtained with 

the SLA are most noticeable for films in air.   

2.3 Gravimetric sensing 

If the sample is rigid, it only affects the resonance frequency through its inertia.  Examples for rigid 

samples are films with a thickness much below the wavelength of sound.  Tightly adsorbed nano-

particles can also be inertial loads.  For inertial loads, the Sauerbrey equation applies:  

Eq. 2 

The Sauerbrey relation is sometimes memorized as f/f = mf/mq (with f = nf0).  The Sauerbrey equation 

is often inverted, so that the mass per unit area is on the left-hand side: 

Eq. 3 

C is the mass-sensitivity constant.  Its value is 17.7 ng cm Hz1 for 5-MHz resonators.  Using the 

Sauerbrey equation, any frequency shift can be straight-forwardly converted to an equivalent change in 

mass per unit area.  The Sauerbrey equation is explicit.  A change of 5.6 Hz in –f/n corresponds to 

1 nm in film thickness, if the density is 1 g/cm3 (assuming f0 = 5 MHz).   QTM recovers the Sauerbrey 

limit for thin, stiff films.  Again, QTM is not needed for the analysis of experiments in terms of 

gravimetry.  One may directly convert from –f/n to mass per unit area. 

2.4 Semi-infinite viscoelastic media, measurements of viscosity 

For semi-infinite media, the viscosity-density product follows from the Gordon-Kanazawa-Mason 

relation (Eq. 4 and Eq. 5).  For semi-infinite media (such as a bulk liquid), the load impedance is the 

same as the acoustic shear-wave impedance of the medium.  The latter is (liqG ̃liq)1/2 = (liqi ̃liq)1/2.  The 

index liq here denotes the bulk medium (which may are may not be a Newtonian liquid).  More 

quantitatively, one has 

 

Eq. 4 

This equation can be inverted, such that the product of the shear modulus and the density (or the 

viscosity-density product) is on the left-hand side: 

Eq. 5 

   
0

1 i i
' i '' ' i ''

2
liq liq liq liq liq liq

qq

f
G G

f ZZ

  
        



0

f

q

mf
n

f m


 

2 2

0 02 2

q qq

f

GZ f f f
m C

f n f n n

  
     

2 2

0 0

1
, ,

i
liq liq q liq liq q

f f
G Z Z

f f

    
           

   



 6 

Eq. 5 also is explicit.  QTM is not needed for the analysis of experiments in which the QCM probes a 

viscosity.   

Note: The left-hand side in Eq. 5 contains the product of liq and G ̃liq (or liq and ̃liq).  The two 

parameters cannot be determined separately.  Stated differently, the QCM determines the viscosity-

density-product, not the viscosity alone. 

2.5 Viscoelastic layer systems, the acoustic multilayer formalism (AMF) 

There is a time-honored formalism to calculate the periodic stress at a resonators surface caused by 

planar layer systems.  The author calls this calculation the “acoustic multilayer formalism” (AMF).  The 

formalism is adapted from an analogous set of equation in optics, where the latter carries the name 

Fresnel formalism.  Each layer supports two plane waves (propagating upwards and downwards), the 

amplitudes of which are fixed by the boundary conditions.  For up to two layers, the results can actually 

be expressed in analytical form and fit into one line (section 5.1).   What is sometimes called “Voigt 

model”, is equivalent to the AMF.d 

2.6 Roughness 

Roughness is a difficult topic.  Practical samples often are slightly rough.  Roughness certainly 

affects f and .  However, assumptions on the details of the geometry are needed to rigorously model 

roughness.  (Such models are feasible, using finite element analysis.)  QTM implements three equation 

sets (following Ref. 9), which were derived making assumptions on the geometry.  There is “shallow 

roughness” meaning that, firstly, the vertical scale is smaller than the horizontal scale and that, 

secondly, the vertical scales is much less than the penetration depth of the shear wave,  (and, also, that 

the roughness is Gaussian in a certain sense).  The vertical scale and the horizontal scale are given by 

the parameters hr and lr.  There are two different sets of equations, applicable to the cases lr <<  (small-

scale roughness, Eq. 15) and lr >>   (large-scale roughness, and Eq. 

16).  QTM should bark when the user picks values for hr and lr 

outside the applicability of the respective equation set.  

In addition to the model for shallow roughness, there is a model 

covering roughness using Darcy flow (Eq. 17).  The rough surface is 

treated as a porous medium.  The parameters of the model are L (the 

thickness of the rough layer) and H (xi_H, the scale of roughness).   

Roughness effects can be combined with viscoelastic layers.  The 

rough interface then is assumed to be the interface between the last 

layer and the bulk liquid (Figure 2).  Roughness effects as treated by QTM only exist, when the 

resonator is immersed in a bulk liquid.  More technically, the shear-wave impedance of the liquid is 

replaced by what is called Zliq,eff  in Eq. 15  Eq. 17.  Again: Result obtained with these equations should 

not be over-interpreted. 

                                                 
d The “Voigt-model” as currently used by QTools simply states that G ̃() = G() + iG().  No statement is 

made on how, exactly, G and G depend on .  (There have been changes in this regard.  Now, QTools also 

implements power laws.)  That the complex shear modulus should contain a real and an imaginary part, is not 

usually viewed as the content of a “model”.  In rheology, the Voigt model states that G should be independent of 

 and that G should scale as .  That was also so in the very first form of the “Voigt-model” from QTools, but 

this approximation is not justified in most cases of practical relevance for the QCM. 

The Voigt model from rheology represents a medium as a spring and a dashpot mounted in parallel.  The 

“Maxwell model” arranges the spring and the dashpot in series, which leads to a different prediction on the 

-dependence of G ̃.   

  
Figure 2:  On roughness 
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2.7 Elastic loading across point contacts 

As first shown by Dybwad in 1985,10 the frequency may also increase when the resonator comes 

into contact with a sample.  This happens with point contacts.  These add little inertia to the system, but 

increase the resonator’s overall stiffness.  For a point contact between the resonator surface and a large 

external object (such as a sphere with a diameter of 100 µm and above) the contact stiffness can be 

explicitly obtained from the frequency shift (Eq. 18, section 11.3 in [3]).  For the simple cases, there is 

no need for modeling with QTM.  QTM implements elastic contacts, because the contacts stiffness 

might depend on frequency and because there may be offsets in 

f and   For more details see section 5.3. 

2.8 Coupled resonances 

If particles touching the resonator are not heavy enough to be 

clamped in space by inertia, they turn into resonators of their 

own, where the restoring force is exerted by the contact (Figure 

3).  For more details see sections 11.4 and 11.5 in [3]).  Coupled 

resonances are intriguing in many ways,11 but turning this 

fascination into robust fit results has often been difficult.  QTM 

tries anyway.  

2.9 Effects not covered by QTM 

The above list concerns models, which are simple enough to 

be translated into an algorithm.  There are other sources of shifts 

in frequency and bandwidth, which are either too complicated or 

simply outside the scope.  Below is a list of effects which are not 

covered by QTM. 

 Energy trapping including the poorly predictable behavior of the fundamental.  

 Compressional waves (section 7.6 in [3]).  

 Temperature and static stress (section 17.2 in [3]).  

 High amplitudes (nonlinear effects, section 13 in [3]).  

 Structure on the scale of the wavelength of sounde (section 12 in [3], Ref. 12).    

3 A Tour Through QTM 

3.1 Inspecting data and model parameters in the Main Form 

The Main Form has already been covered to some extent in section 1.  A few further comments: 

 QTM has input verification.  An input is only accepted after the user hits Return.   

 Shifts of frequency and bandwidth are always to be understood as shifts with respect to some 

reference state (see also section 4.3).  The reference state is edited in the Reference Form.  The user 

may also turn some state into the reference state by clicking -> Reference. 

 It is helpful to activate limits on the parameters in the Limits Form.  QTM offers default limits, when 

the user clicks Defaults in the Limits Form.  If limits are active, the respective fields in Main Form 

have light blue background.  Otherwise, the background is white.  If a certain parameter is at the 

                                                 
e Roughness amounts to such structures.  The models for roughness as proposed by the Tel-Aviv group make 

numerous assumptions.  Generally speaking, predicting f and  produced by arbitrary structures is a challenge 

with significant recent success.[12] 

 

Figure 3: Sketch of a contact between a 

sphere and the resonator surface.  It is 

essential that the contact is smaller than the 

sphere and, also, were smaller than the 

wavelength of sound.  Only the region 

close to the contact (dashed circle) is 

deformed.  Together with the deformed 

region of the substrate, it forms a Hookean 

spring.  B: Mechanical equivalent circuit.  

Viscous dissipation is accounted for by a 

dashpot.   
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Fig. 1: A: Sketch of a contact between a sphere 

and the resonator surface.  It is essential that the 

contact is smaller than the sphere and, also, were 

smaller than the wavelength of sound.  Only the 

region close to the contact (dashed circle) is 

deformed.  Together with the deformed region of 

the substrate, it forms a Hookean spring.  B: 

Mechanical equivalent circuit.  Viscous dissipation 

is accounted for by a dashpot.   
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limit or beyond the limit, the number turns red.   

Some limits are rigorous.  For instance, thicknesses and moduli must never be negative.  There also 

are strict limits for the power-law exponents (Eq. 7).  In other cases (such as the maximum 

reasonable thickness of a layer), the limits are a matter of personal judgement.  If the fit tries to make 

a layer very soft, it runs into an instability because the term kd in tan(kd) then becomes large.  tan(kd) 

occurs often.  One should make the lower limits of the moduli slightly larger than zero for that 

reason. 

Watch out: When limits are imposed, the simplex algorithm sometimes increases 2.  The limits 

intervene into the simplex algorithm to the extent, that it may stop where it should not stop.  Keep a 

close eye on the value of 2.   

 The Form Graphics allows to set titles and subtitles of the graphs. 

 For the representation of viscoelastic parameters see section 4.2. 

 Most users are interested viscoelastic layer systems, to be modeled with the acoustic multilayer 

formalism (AMF).  The following other models are available: 

 - Roughness effects as turned into analytical equations by the Tel-Aviv group (section 5.2).   

 - Analytical equations derived from a perturbation analysis (to 3rd or 5th order, section 5.5). 

 - Elastic loading across point contacts (sections 2.7 and 5.3). 

 - Coupled resonances (sections 2.8 and 5.4) 

3.2 Fitting 

Once a set of reasonable system parameters has been found, the quality of the model can be 

improved by a fit, that is, by a 2-minimization.  QTM offers a choice between the Simplex algorithm 

and the Levenberg-Marquardt algorithm for fitting.13  The Simplex algorithm is more robust, the Leven-

berg-Marquardt is more efficient when the numbers of fit parameters is large.  Fitting is a bit of an art.  

It requires good starting values.  It requires some experience, some understanding of the background, 

and a critical attitude in order to not over-interpret results. 

2 is a measure of the goodness of a fit.  2 is defined as  

Eq. 6 

novt is the number of overtones included in the analysis. nfitpar is the number of fit parameters.  The factor 

of 2 before novt occurs because every overtone contributes two data points (Δf and Δ).  If only Δf or 

only Δ are used for fitting (box above “Fit with” button), the factor of 2 is replaced by 1. 

f is the statistical uncertainty on f and  on the fundamental.  The uncertainty is about the same 

on f and , hence only one parameter.  QTM’s default value is f = 1 Hz.  This value can be changed by 

double-clicking onto the 2 symbol.  A dialog will open.  f only affects the value of 2, not the fit 

parameters, which make 2 minimal.  If f was estimated correctly and if 2 is of the order of unity, the 

quality of the fit is as good as it can get.  2 then is dominated by statistical noise.  More often than not, 

systematic errors (rather than statistical noise) dominate 2. 

That leaves the question of how the weight wn in Eq. 6 should depend on overtone order.  If 

statistical noise dominates, the weights should be proportional to 1/n2 because the noise on f and  is 
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roughly proportional to the overtone order n.  However, the errors may be systematic rather than 

statistic.  For that reason, QTM also allows for statistical weights proportional to n1 and n0.   

A few more comments: 

 When a fit goes wrong, the fit parameters often go to values far outside the reasonable range.  

Recover the previous state with <- Backup. 

 Parameters are turned into fit parameters by checking the squares next to them.  QTM allows for a 

maximum of 6 fit parameters. 

 Thickness, d, and density, , cannot be active for fitting at the same time.  d and  cannot be 

determined independently (see also section 4.1).  

 The density of the bulk and the viscosity of the bulk cannot be fit parameters at the same time 

because the QCM only determines the viscosity-density product.   

 The confidence range can be estimated with a procedure implemented the Form chi^2 Landscape 

(section 3.4). 

3.3 Analyze entire files  

Data from entire files are handled in the Form Analyze Entire Files (Figure 4).  In a first step, 

import the data (either from the clipboard or from a file).   

*** Make sure to have the option {Df[Hz], DG[Hz]} or {Df/n[Hz], DD[10^-6]} set correctly.  *** 

Usually, one will skip some lines.  QTM can handle a maximum of 10 000 lines, but it is advisable to 

work with smaller numbers for the sake of speed.   

One may hide data points, data sets, or ranges of data. 

One may select a new reference state. 

Typically, one first picks one representative data set and finds a good set of system parameters 

using the Main Form.  One then selects a range of data to be fitted.  There is a choice with regard to the 

 

Figure 4: The Form Analyze Entire Files 
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guesses, from which the fit starts.  The guess may be the result from the fit of the one data set, which 

was analyzed in detail.  The guess may also be the result from the previous fit.  The former method may 

go wrong when the properties of sample vary 

strongly over time and the one representative 

data set is not actually representative for the 

entire range of data.  The latter method goes 

wrong when one fit fails.  After one fit has 

failed, all following fits fail as well because of 

the poor values for the guess.  If the latter 

option is chosen, it is sometimes helpful to 

proceed from late to early times because the 

sample slowly varies in its properties at the 

end of the experiment.   

3.4 Chi^2 landscape 

The confidence range is a bit of a thorny 

issue because systematic errors certainly exist.  For a discussion of the matter in general see chapter 

15.6 in Ref. 13.  QTM implements a search for the confidence range in the Form chi^2 Landscape 

(Figure 5).  

QTM varies the parameter of interest in a certain range and does a fit, adjusting the remaining fit 

parameters, only.  2 resulting from this reduced fit is displayed versus the value of the respective 

parameter.  This graph has a minimum at the value, where the first fit had converged.  (After all, the fit 

undertaken from the Main Form had searched just that minimum.)  Depending on how unique this result 

is, the 2 values increase more or less steeply to the left and right of the optimum.  Select the confidence 

level in the respective box.  QTM inserts horizontal lines into the graph and reports the confidence 

limits in blue.   

QTM reports confidence limits based on the degree of confidence required.  The factors in 2 

corresponding to the different levels of confidence follow the table in section 15.6 in Ref. 13.  For 

instance, if there is just one fit parameter, the values of 2 at the limits are 

  2
limit = 2 2

min for a confidence level of 68.3% (1) 

 2
limit = (1+2.71) 2

min for a confidence level of 90%  

 2
limit = (1+6.63) 2

min for a confidence level of 99%  

The factors are larger in case there are more fit parameters.   

QTM only reports limits, if 2 somewhere inside the search range increases to the values demanded by 

the chosen confidence level.  If that is not the case, one may expand the search range – or accept that the 

uniqueness of the fit is poor. 

3.5 Further parameters entering the analysis 

There are parameters entering the analysis unrelated to the sample.  These are:  

 The frequency of the fundamental, f0.  A typical value is f0 = 5 MHz.   

 

Figure 5: The Form chi^2 Landscape 
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 The shear-wave impedance of AT-cut quartz.  A typical value is 8.8106 kg m sThere is some 

room for debate on the most suitable value of Zq because of energy trapping.f   

Other values of Zq are needed for Langasite resonators14 and for torsional resonators.15 

 The reference frequency for viscoelastic parameters (ref/(2) with ref from Eq. 7  A typical value 

is fref = 30 MHz.  (Note: “ref” here is not the reference state.) 

4 Some Details of the Machinery 

4.1 Thickness versus mass per unit area 

On a fundamental level, the QCM cannot independently determine the thickness and the density of a 

layer.  Only the product of the two (the mass per unit area) enters the equations of the AMF.  QTM 

nevertheless displays the thickness because the density often is known with good accuracy and because 

many users are more familiar with the unit nm than with the unit µg/cm2.  (If the density is 1 g/cm3, 

1 g/cm2 correspond to a thickness of 10 nm.)  Again, the derived thickness depends on the chosen 

density.   

QTM uses the term "mass" for "mass per unit area".  The unit is g/cm2.  QTM displays the mass 

per unit area, after the user double-clicks onto the field showing the layer thickness.   

4.2 Representation of viscoelasticity 

Different parameters are in use to quantify viscoelasticity.  QTM offers a choice between  

 - the shear modulus G̃   

 - the shear compliance J̃  

 - the viscosity̃.   

The three are related as J̃ = 1/G̃ and G̃ = i ̃.g  G̃ and ̃ are mostly used for solid and liquid media, 

respectively.  QTM also offers the parameter J̃, because J' and J'' enter the frequency shift and the shift 

in bandwidth separately, if the film is much thinner than the wavelength of sound (see eqs. 10.1.10 and 

10.2.6 in [3], see also Eq. 11 in this text).  Arguably, the QCM senses softness rather than stiffness 

because soft samples behave peculiarly, while stiff samples look like Sauerbrey layers.  In all three 

cases (G̃, J ̃, or ̃), there is a choice to express the complex parameters as G̃ = G + iG or as 

G̃ = |G| exp(iL) (analogous relations for J̃ and ̃).  QTM actually uses tan L for fitting rather than L.  

tan L is the same as the loss tangent, if G̃ = or J̃ are employed.  (L is the inverse loss tangent for ̃.)   

The user can choose between the different representations in the boxes on the right-hand side.  

When the user changes the representation, QTM attempts to change the values accordingly.  This is less-

than-perfect, because a power law in one representation does not always translate to a power law in 

another representation.   

Importantly, the viscoelastic parameters depend on frequency.  This may create the impression that 

the problem was underdetermined because there are separates values of G and G for every single 

overtone.  However, the frequency dependence of G and G usually is smooth.  QTM assumes power 

laws of the form  

                                                 
f Choose f0 = 4.95 MHz and Zq = 8.769382106 kg m s if you want to achieve exact agreement with QTools. 

 
g G is not equal to 1/J.  The relation is G = J/(J2 + J2).  Similar relations hold for the other conversions. 
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Eq. 7 

Analogous relations hold for J̃ and ̃.   

Note: These power laws also hold, if the complex variables are expressed in polar form.  They always 

apply to the real part and the imaginary part, never to the absolute value and tan . 

A note on terminology: Eq. 7 and QTM use the frequency, f, related to the angular frequency by 

 = 2f.  This text also often uses the angular frequency .  Occasionally, the reader needs to remember 

the factor of 2. 

There is a problem with power laws: A power law behavior in G'() and G''() does not translate to 

a power law after converting to J'() and J''().  In consequence, the frequency shifts, which QTM 

computes, slightly differ, when switching between representations.   

The Kramers-Kronig relations pose limits on  and :   

 If the modulus is used (G and G), one has 0 <  < 2 and 1 <  < 1.   

 If the compliance is used (J and J), one has 2 <  < 0 and 1 <  < 1.   

 If the viscosity is used ( and ), one has 2 <  < 0 and 1 <  < 1.   

These limits are implemented as default limits in the Limits Form. 

4.3 Reference state  

Any frequency shift in QTM is to be understood as a frequency shift relative to the frequency in the 

respective reference state.  Make sure that QTM uses the correct reference state.  The parameters of the 

reference state can be edited in the Reference Form.  One may also turn some state into the reference 

state by clicking the button -> Reference. 

For the coupled resonance and for effects of elastic stiffness, QTM only offers the trivial reference 

state. 

The reference state cannot be rough. 

QTM forces the user the choose the same viscoelastic parameters (such as {J',J''} or {G',G''}) in the 

references state and the state with the sample.  There is a reason to do this.  A power law in {J',J''} and a 

power law in {G',G''} are not completely equivalent (unless the exponents are zero).  If the reference 

state and the state with the sample use different sets of viscoelastic parameters, there is the danger that a 

nonzero frequency shift is predicted simply because the choices of variables are unequal.  This must be 

avoided. 

4.4 Discard data from the fundamental 

For a number of (poorly understood) reasons, the frequency shift measured on the fundamental 

often does not match the expectations well and the data from the fundamental might just as well be 

discarded.  Depending on the details, data from the 3rd overtone can be problematic as well. 

4.5 Film resonances 

Films with a thickness of about a quarter of the wavelength of sound produce a film resonance 

(section 10.1 in [3]).  An examples is the tangent in Eq. 13.  If the film shows sufficient damping, Eq. 13 

can be trusted.  Otherwise, the load becomes large and the SLA does no longer hold at the film 

resonance.  Around the film resonance, there are two modes, rather than one.  One can see this as a 

       
' ''

' ' '' ''ref ref ref ref

ref ref

f f
G f G f G G f

f f

 

   
     

   
   
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sudden jump of the frequency shift in a swelling experiment.  As swelling proceeds, the lower mode 

becomes weaker and weaker.  At some point, the instrument can no longer find the lower mode and 

searches for other modes in the vicinity.  Eventually it finds the higher mode (higher in frequency).  The 

frequency shift then jumps upwards.   

Even in cases, where the film resonance is so broad that there is no mode splitting, the agreement 

between the AMF and the experimental data has often poor in the past.  Presumably this happens, 

because mode splitting still affects the data in one way or another. 

4.6 Electrode effects 

For the determination of the viscoelastic properties of films in the dry state, it is essential to 

properly include the thickness and the modulus of the front electrode into the reference state.  These 

have to be known with good accuracy.  Typically, layer 1 then is the electrode, layer 2 is the sample.  

Why electrodes are of such importance in the dry state, is explained in Ref. 16. 

4.7 Viscoelastic profiles 

In principle, viscoelastic profiles (for instance produced by a polymer brush) may be covered by 

the acoustic multilayer formalism, using many layers.  There was such an option in the previous version, 

but it was removed because uniqueness of the fit proved to be problematic.  Actually, there is a rather 

easy way to predict f and  for such situation, solving the underlying partial differential equation.  

Sample code is contained in “SolveWaveEquationViscoElasticProfiles.nb”.  Mathematica solves the 

wave equation for continuous profiles of G(z), G(z), and (z) and derives the shifts of frequency and 

bandwidth from the solution.  The core of the program is a few lines long.  For more details see sections 

10.6 and 10.8 in [3]. 

5 Underlying Equations  

5.1 Layer systems 

QTM computes the acoustic load induced by layer systems following the matrix formalism as 

described in section 5 in [3].  For simple layer systems (1 or 2 layers), there are explicit equations, 

provided below.  For a single layer in air, one has  

 

Eq. 8 

Taylor expansion of Eq. 8 to 1st order in film thickness, df, yields the Sauerbrey result (section 10.1 in 

[3]).  There is a twist with regard to the Taylor expansion to 3rd order in df.  This expansion reveals 

finite-compliance effects in the thin-film limit.  Taylor expansion of Eq. 8 to 3rd order in film thickness 

yields  

 

Eq. 9 

The perturbation calculation shows that the correct equation is 

 

Eq. 10 
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Expressed as a function of the film’s viscoelastic compliance, this result reads as 

 

Eq. 11 

If the film’s stiffness is comparable to the stiffness of the crystal (if Zf  Zq), the difference is 

substantial.  If f(n) is naively analyzed with Eq. 9, one may easily find negative values for G. 

For a single layer in a liquid one has 

 

Eq. 12 

Taylor expansion of 1st order in the mass per unit area yields 

Eq. 13 

Even for very thin films, this equation is different from the Sauerbrey equation.  The term in brackets is 

sometimes associated with the “missing mass effect”.17  The author calls it the “finite compliance 

effect”.16  Finite compliance lowers the apparent mass, if analyzed with the Sauerbrey equation. 

The current version of QTM allows for a maximum of two layers.  The AMF result for a system of 

two layers embedded in a liquid still fits into one line:  

Eq. 14 

Eq. 8, Eq. 12, and Eq. 14 can programmed as fit functions into Excel.  The Excel solver should 

produce the same fits as QTM.  

5.2 Roughness 

Shallow roughness on small scales (hr  lrhr  lr  ) is represented as  

Eq. 15 

Shallow roughness on large scales (hr  lrhr  lr  ) is represented as  

Eq. 16 
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Non-shallow roughness modeled with Darcy flow follows the equation 

Eq. 17 

QTM assigns the effective impedance to the bulk medium.  In this way, roughness can be part of 

the acoustic multilayer formalism (Figure 2). 

5.3 Elastic loading across point contacts 

In the most simple version of elastic coupling, one has the relation (section 11 in [3]) 

Eq. 18 

̃ is a complex contact stiffness, nP/A is the number of contacts per unit area.  The combination of 

parameters (nP/A)̃ can be collected into an “effective contact stiffness” ̃eff.  The real and the imaginary 

part are expressed as  

Eq. 19 

 is the drag coefficient of a dashpot mounted in parallel to the spring.  The contact here is modeled as a 

Voigt-element in the sense of rheology.  tan L is the loss tangent (compare to section 4.2).  The loss 

tangent is the fit parameter.   

QTM goes beyond this simple model in two regards.  Firstly, it allows for an offset in f/n and 

/n:   

Eq. 20 

Also, it allows for viscoelastic dispersion on the elastic stiffness, eff, and on the drag coefficient, eff 

following  

Eq. 21 

The situation is similar to what is done in the case of viscoelastic dispersion.  The power law exponents 

are called “PL exp” in QTM. 

5.4 Coupled resonances 

For a discussion of coupled resonances, see chapter 11.5 in [3].  The frequency shift induced by an 

adhering particle with its own “particle resonance frequency” is given as  
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̃P,0 is the particle resonance frequency.  Plotting f and  versus n, one again finds a resonance curve.   

Eq. 22 assumes the spring and the dashpot to operate in parallel (assumes a “Voigt-type” link).  For 

the Maxell-type link see below. 

̃P,0 is defined by the relation  

Eq. 23 

P is the elastic stiffness of the contact and P is the drag coefficient of the corresponding dashpot.  One 

defines a damping constant, P, as  

Eq. 24 

The parameters used by QTM are  

Eq. 25 

The right-hand side contains the roots of real and the imaginary parts of ̃P,0
2, not the other way round.  

Taking the root first leads to the “ringing frequency”.  fP,0 is the undamped resonance frequency, which 

differs from the ringing frequency (eq. 4.1.18 in [3]).  While the difference is marginal for the resonance 

frequency of the QCM, it can be substantial for the particle resonance frequency,  

If the spring and the dashpot are arranged in series (“Maxwell-type” link), one has11  

Eq. 26 

Eq. 22 is then replaced by  

Eq. 27 

There are a few complications: 

 In most experiments, the parameters entering Eq. 22 (or Eq. 27) will not be the same for all 

particles.  There may be distributions in fP,0, fP,0, and MP.  QTM seeks a compromise between 

realistic modeling, on the one hand, and simplicity, on the other.  It allows for a Gaussian 

distribution in fP,0. The parameters fP,0 and MP assume a single value.  Given the distribution, there 

are two fit parameters associated with fP,0 which are the center of the distribution and its width.  

Because the Gaussian distribution is cut off at fP,0 = 0, the center of the Gaussian is not the average 

of fP,0.  The average is calculated separately (called <fp> [MHz] in QTM). 

2

,0

iP P
p

P PM M

 
  

P
P

PM


 

2

.0 ,0

2

.0 ,0

1 1
' '

2 2

1 1
'' ''

2 2

P

P p

P

P p P

f
M

f


  

 

   
 

2

0

2

1 1

i
1

OS P

q

PP

f
f M

f Z

 
 
  

 


1

2

,0.

1 1 1

i
P Maxwell

P P PM



 
   

  



 17 

 For spheres adsorbed from the liquid phase, there will be sources of frequency shifts other than the 

coupled resonance.  In order to account for these, QTM allows for an offset in Δf/n and an offset in 

ΔΓ/n. 

 There is a prefactor in Eq. 22, which is the “oscillator strength”, fOS (see section 11.5 in [3]).  Also, 

the number of particles per unit area may be unknown.  QTM absorbs the combination of 

parameters fOSNPMP into one fit parameter, which is the effective mass, meff.   

We now have the parameters of the model assembled.  There are 8 parameters, which are 

- The apparent mass per unit area   m_eff [µg/cm^2] 

- The center of the Gaussian distribution in fP,0   f_CR [MHz] 

- The width of the distribution in fP,0   Het. Linew. [MHz] 

- The damping coefficient, γP/2    Hom. Linew. [MHz] 

- The offset in Δf/n     Df/n Off [Hz]   

- The offset in ΔΓ/n     DG/n Off [Hz]  

- A power law exponent for eff    PL exp k 

- A power law exponent for eff   PL exp xi 

For the Voigt-type link, QTM fits the data with the equation 

 

Eq. 28 

Replace the ratio by the corresponding ratio from Eq. 27 for the Maxwell-type link.   

The distribution function g(fP,0) is  

Eq. 29 

Znorm takes care of normalization.  It is computed numerically. 

QTM allows to also use a single real part of the particle resonance frequency (“Single omP“ rather 

than „PolyDis in omP“ in the respective box).  Internally, QTM simply uses a very narrow distribution 

in this case.  
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5.5 Perturbation analysis 

The equations implemented by QTM are given below.  We start with abbreviated notation:  

Index e: first layer (“electrode”) 

Index f: second layer (“film”) 

Index liq: bulk medium (“liquid”) 

Reduced masses: µe = me/mq, µf = mf/mq 

Reduced shear-wave impedances  

Eq. 30 

5.5.1 Semi-infinite liquid (can be a viscoelastic medium) 

Eq. 31 

5.5.2 Viscoelastic film in air 

Eq. 32 
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5.5.3 Viscoelastic film in liquid 

Eq. 33 

 

 

 

 

 

 

 

 

 

 

5.5.4 Two viscoelastic films in air 

SLA-Result: 

Eq. 34 

Perturbation analysis, 3rd order: 

Eq. 35 
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Perturbation analysis, 5th order: 

Eq. 36 

 

 

5.5.5 Two viscoelastic films in a liquid 

SLA-Result: 

Eq. 37 

Perturbation analysis, 3rd order:  

Eq. 38 
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Perturbation analysis, 5th order: 

Eq. 39 
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6 Glossary 

Variable Definition Comment  

<> Area-average 

A (Effective) area of the resonator plate  

C Mass-sensitivity constant Eq. 3 

d Thickness of a layer   

dq Thickness of the resonator dq = mq/q = Zq/(2qf0)  

D Dissipation factor D = 1/Q = 2/fr 

e As an index: electrode Section 5.5 

f As an index: film Section 5.5 

f Frequency   

f̃ Complex resonance frequency  f̃ = fr + i 

fr  Resonance frequency Here: the undamped res. frequency

 also: “series resonance frequency” 

f0 Resonance frequency at the fundamental f0 = Zq/(2mq) = Zq/(2qdq) 

fOS Oscillator strength A number, not a frequency, Eq. 18 

g(P,0) Weight function Eq. 23 

G̃ Shear modulus  

Gq Shear modulus of AT-cut quartz Gq = 29×109 Pa, 

     often called µq in the literature. 

hr Characteristic vertical scale of roughness Section 5.2, “h” for “height” 

J ̃ Shear compliance  

k ̃ Wavenumber k ̃ = c ̃ 

liq As an index: liquid  

lr Characteristic lateral scale of roughness Eq. 12 and Eq. 13, “l” for “lateral” 

L Thickness of rough layer  Eq. 14  

    (roughness modeled by Darcy flow) 

MP Mass of a particle  Eq. 18 

m Mass per unit area   

mq Mass per unit area of the resonator mq =  qdq = Zq/(2f0)  

n Overtone order  

NP Number of particles per unit area Eq. 18 

q As an index: quartz resonator  

Q Q-factor Q = 1/D = fr/(2) 

ref As an index: reference state of a crystal in the absence  

  of a load 

  Or: reference frequency (Eq. 7) 

v̂ Amplitude of tangential velocity Eq. 1 

Z̃ Acoustic wave impedance  Mostly a shear-wave impedance 

     Z̃ = c ̃ = (G̃)1/2 

Z̃L Load impedance  Eq. 1 

Zq Acoustic shear-wave impedance of AT-cut quartz Zq = 8.8106 kg m2 s1 

, Power law exponents Eq. 7 (“PL exp” in QTM) 

2 Measure of the quality of a fit Eq. 6 

P Decay constant of a particle resonance Eq. 20 

 Imaginary part of a resonance frequency  = fr/2 

 Penetration depth of a shear wave Newtonian liquids: 

    = (2liq/(liq))1/2 

L Loss angle tan L = G/G = J/J 

    often called  in rheology 

  As a prefix: A shift induced by the sample  

̃ Viscosity ̃ = G̃/(i) 

̃P Tangential spring constant  
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µ Non-dimensional mass Eq. 24 

 Density   

q Density of crystalline quartz q = 2.65 g/cm3 

̂|| Amplitude of tangential stress Eq. 1 

H Cross section of effective pores ("permeability") Eq. 14 

liq Non-dimensional shear-wave impedance Eq. 24 

  of the bulk liquid 

 Angular frequency  

P,0 Undamped particle resonance frequency Eq. 18  

 Non-dimensional inverse square shear-wave impedance Eq. 24 
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